Skip to main content
Log in

High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Mardsen, C. Bogey, and C. Bailly, “High-order curvilinear simulations of flows around non-Cartesian bodies,” J. Comput. Acoust. 13 (4), 731–748 (2005).

    Article  MATH  Google Scholar 

  2. C. K. W. Tam and H. Ju, “Numerical simulation of the generation of airfoil tones at a moderate Reynolds number,” AIAA Paper, No. 2006-2502 (2006).

  3. R. D. Sandberg, L. E. Jones, N. D. Sandham, and P. F. Joseph, “Direct numerical simulations of noise generated by airfoil trailing edges,” AIAA Paper, No. 2007-3469 (2007).

  4. L. E. Jones and R. D. Sandberg, “Direct numerical simulations of noise generated by the flow over an airfoil with trailing edge serrations,” AIAA Paper, No. 2009-3195 (2009).

    Google Scholar 

  5. M. Riherd, S. Roy, D. Rizzetta, and M. Visbal, “Study of transient and unsteady effects of plasma actuation in transitional flow over an SD7003 airfoil,” AIAA Paper, No. 2011-1075 (2011).

    Google Scholar 

  6. I. Mary and P. Sagaut, “Large eddy simulation of flow around an airfoil,” AIAA Paper, No. 2001-2559 (2001).

    Google Scholar 

  7. E. Manoha, C. Herrero, P. Sagaut, and S. Redonnet, “Numerical prediction of airfoil aerodynamic noise,” AIAA Paper, No. 2002-2573 (2002).

    Google Scholar 

  8. P. E. Morgan and M. R. Visbal, “Large-eddy simulation of airfoil flows,” AIAA Paper, No. 2003-777 (2003).

    Google Scholar 

  9. S. R. Koh, K. W. Chang, and Y. J. Moon, “Turbulence trailing-edge noise at low Mach number,” AIAA Paper, No. 2005-2974 (2005).

    Google Scholar 

  10. A. A. Oberai, F. Roknaldin, and T. J. Hughes, “Computation of trailing-edge noise due to turbulent flow over an airfoil,” AIAA J. 40 (11), 2206–2216 (2002).

    Article  Google Scholar 

  11. X. Gloerfelt and T. Garrec, “Trailing edge noise from an isolated airfoil at a high Reynolds number,” AIAA Paper, No. 2009-3201 (2009).

    Google Scholar 

  12. A. D. Savel’ev, “Multioperator representation of composite compact schemes,” Comput. Math. Math. Phys. 54 (10), 1522–1535 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Arias, O. Falcinelli, N. Fico, Jr., and S. Elaskar, “Finite volume simulation of a flow over a NACA0012 using Jameson, MacCormack, Shu, and TVD Esquemes,” Mec. Comput. 26, 3097–3116 (2007).

    Google Scholar 

  14. F. R. Menter, “Zonal two equation k-ω turbulence models for aerodynamic flows,” AIAA Paper, No. 93-2906 (1993).

    Google Scholar 

  15. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Begell House, New York, 1996).

    MATH  Google Scholar 

  16. T. J. Coacley, “Turbulence modeling methods for compressible Navier–Stokes equations,” AIPP Paper, No. 83-1693 (1983).

    Google Scholar 

  17. A. D. Savel’ev, “Practical comparison of two turbulent models,” Mat. Model. 21 (9), 108–120 (2009).

    MATH  Google Scholar 

  18. A. D. Savel’ev, “Numerical simulation of acoustic radiation of a two-dimensional cavity in subsonic flow,” Uch. Zap. TsAGI 45 (1), 57–74 (2014).

    Google Scholar 

  19. J. L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries,” AIAA J. 16, 676–685 (1978).

    Article  Google Scholar 

  20. R. B. Langtry and F. R. Menter, “Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes,” AIAA J. 47 (12), 2894–2906 (2009).

    Article  Google Scholar 

  21. V. V. Vlasenko and A. N. Morozov, “Algorithm for triggering laminar-turbulent transition in the numerical flow simulation based on the Reynolds equations,” Uch. Zap. TsAGI 42 (4), 49–63 (2011).

    Google Scholar 

  22. V. V. Vozhdaev, A. F. Kiselev, D. S. Sboev, L. L. Teperin, and S. L. Chernyshev, “Simulation of the laminarturbulent transition on the basis of the numerical solution of the nonstationary Navier–Stokes equations,” Uch. Zap. TsAGI 47 (3), 38–46 (2016).

    Google Scholar 

  23. J. Erdos and A. Pallone, “Shock-boundary layer interaction and flow separation,” in Proceedings of Heat Transfer and Fluid Mechanics Institute (Stanford Univ. Press, Stanford, CA, 1962), pp. 239–254.

    Google Scholar 

  24. G. N. Abramovich, Applied Gas Dynamics, 5th ed. (Nauka, Moscow, 1991), Part 1 [in Russian].

    Google Scholar 

  25. G. M. Bam-Zelikovich, “Computation of boundary layer separation,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12, 68–85 (1954).

    Google Scholar 

  26. L. V. Gogish and G. Yu. Stepanov, Turbulent Separated Flows (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Savel’ev.

Additional information

Dedicated to the 100th birthday of Academician N.N. Moiseev

Original Russian Text © A.D. Savel’ev, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 2, pp. 291–303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savel’ev, A.D. High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow. Comput. Math. and Math. Phys. 58, 274–285 (2018). https://doi.org/10.1134/S0965542518020148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518020148

Keywords

Navigation