Scalarization Method in Multicriteria Games

  • N. M. Novikova
  • I. I. Pospelova


Using a two-criteria two-person game as an example, the validity of the scalarization method applied for the parameterization of the set of game values and for estimating the players’ payoffs is investigated. It is shown that the use of linear scalarization by the players gives the results different from those obtained using Germeyer’s scalarization. Various formalizations of the concept of value of MC games are discussed.


multicriteria games mixed extensions scalarization method linear scalarization Germeyer’s scalarization averaging of the vector of criteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Shapley, “Equilibrium points in games with vector payoffs,” Naval Res. Log. Quarterly, No. 6 (1959).Google Scholar
  2. 2.
    P. Borm, D. Vermeulen, and M. Voorneveld, “The structure of the set of equilibriums for two person MC games,” Eur. J. Oper. Res. 148, 480–493 (2003).CrossRefMATHGoogle Scholar
  3. 3.
    Yu. B. Germeyer, Introduction to the Theory of Operations Research (Nauka, Moscow, 1971) [in Russian].Google Scholar
  4. 4.
    H. Moulin, Game Theory for the Social Sciences (Studies in Game Theory and Mathematical Economics) (New York Univ. Press, New York, 1986; Mir, Moscow, 1985).Google Scholar
  5. 5.
    D. Blackwell, “An analog of the minimax theorem for vector payoffs,” Pacif. J. Math., No. 6 (1956).Google Scholar
  6. 6.
    V. I. Podinovskii and V. D. Noghin, Pareto-Optimal Solutions of MC Problems (Nauka, Moscow, 1982) [in Russian].Google Scholar
  7. 7.
    N. M. Novikova, I. I. Pospelova, and A. I. Zenyukov, “Method of Convolution in MC Problems with Uncertainty,” J. Comput. Syst. Sci. Int. 56, 774–795 (2017).CrossRefMATHGoogle Scholar
  8. 8.
    M. Voorneveld, D. Vermeulen, and P. Borm, “Axiomatizations of Pareto equilibria in MC games,” Games Econ. Behavior 28, 146–154 (1999).CrossRefMATHGoogle Scholar
  9. 9.
    I. I. Pospelova, “Classification of vector optimization problems with uncertain factors,” Comput. Math. Math. Phys. 40, 820–836 (2000).MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations