Advertisement

Nonclassical Transonic Boundary Layers: Toward Overcoming Dead-End Situations in High-Speed Aerodynamics

  • A. N. Bogdanov
  • V. N. Diesperov
  • V. I. Zhuk
Article
  • 22 Downloads

Abstract

Analytical models of unsteady free viscous-inviscid interaction of gas flows at transonic speeds, i.e., a transonic boundary layer with self-induced pressure (nonclassical boundary layer) are considered. It is shown that an adequate flow model can be constructed by applying methods of singular perturbations. The results of a comparative analysis of classical and regularized stability models for a boundary layer with self-induced pressure in the case of interaction at transonic speeds are overviewed.

Keywords

boundary layer flow stability transonic flow asymptotic expansions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung,” Verh. Int. Math. Kongr. Heidelberg (1904).Google Scholar
  2. 2.
    V. Ya. Neiland, “Supersonic viscous gas flow near the separation point,” Abstract of Papers of the 3rd All-Union Conference on theoretical and Applied Mechanics, January 25–February 1, 1968 (Nauka, Moscow, 1968), p. 224.Google Scholar
  3. 3.
    K. Stewartson and P. G. Williams, “Self-induced separation,” Proc. R. Soc. London, Ser. A 312 (1509), 181–206 (1969).CrossRefMATHGoogle Scholar
  4. 4.
    O. S. Ryzhov, “Unsteady boundary layer with self-induced pressure in transonic flow,” Dokl. Akad. Nauk SSSR 236 (5), 1091–1094 (1977).MathSciNetGoogle Scholar
  5. 5.
    O. S. Ryzhov and I. V. Savenkov, “Stability of a boundary layer with transonic external-flow velocities,” J. Appl. Mech. Tech. Phys. 31 (2), 222–227 (1990).CrossRefGoogle Scholar
  6. 6.
    V. I. Zhuk, Tollmien–Schlichting Waves and Solitons (Nauka, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    A. N. Bogdanov, “Higher approximations of the transonic expansion in problems of unsteady transonic flow,” J. Appl. Math. Mech. 61 (5), 775–786 (1997).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. N. Bogdanov, “Modeling the transient regime of a transonic nozzle,” Mat. Model. 7 (9), 117–126 (1995).MathSciNetMATHGoogle Scholar
  9. 9.
    A. N. Bogdanov and V. N. Diesperov, “The simulation of unsteady transonic flow and the stability of a transonic boundary layer,” J. Appl. Math. Mech. 69 (3), 358–365 (2005).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    C. C. Lin, E. Reissner, and H. S. Tsien, “On two-dimensional non-steady motion of a slender body in a compressible fluid,” J. Math. Phys. 27 (3), 220–231 (1948).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. N. Bogdanov, V. N. Diesperov, and V. I. Zhuk, “Asymptotics of the lower branch of the neutral stability curve for the transonic interacting boundary layer on a flat plate,” Dokl. Phys. 58 (3), 104–106 (2013).CrossRefGoogle Scholar
  12. 12.
    S. A. Gaponov and A. A. Maslov, Development of Perturbations in Compressible Flows (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  13. 13.
    A. N. Bogdanov, V. N. Diesperov, and V. I. Zhuk, “Special points of the field of dispersion curves when investigating the stability of the transonic boundary layer,” Dokl. Phys. 58 (4), 141–142 (2013).CrossRefGoogle Scholar
  14. 14.
    A. N. Bogdanov and V. N. Diesperov, “Tollmien–Schlichting waves in a transonic boundary layer: Excitation from the outer flow and from the surface,” J. Appl. Math. Mech. 71 (2), 258–268 (2007).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    E. D. Terent’ev, Doctoral Dissertation in Mathematics and Physics (Computing Center, Russian Academy of Sciences, Moscow, 1986).Google Scholar
  16. 16.
    J. D. Cole and L. P. Cook, Transonic Aerodynamics (North-Holland, Amsterdam, 1986).MATHGoogle Scholar
  17. 17.
    V. Ya. Neiland, “Asymptotic problems in the theory of supersonic viscous flows,” in Proceedings of Central Institute of Aerohydrodynamics (Moscow, 1974), No. 1529 [in Russian].Google Scholar
  18. 18.
    H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATHGoogle Scholar
  19. 19.
    O. S. Ryzhov and E. D. Terent’ev, “On the transition mode characterizing the triggering of a vibrator in the subsonic boundary layer on a plate,” J. Appl. Math. Mech. 50 (6), 753–762 (1986).CrossRefMATHGoogle Scholar
  20. 20.
    A. V. Chernyshev, Candidate’s Dissertation in Mathematics and Physics (Computing Center, Russian Academy of Sciences, Moscow, 2010).Google Scholar
  21. 21.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, 1972).MATHGoogle Scholar
  22. 22.
    S. N. Timoshin, “Asymptotic form of the lower branch of the neutral curve in transonic boundary layer,” Uch. Zap. TsAGI 21 (6), 50–57 (1990).Google Scholar
  23. 23.
    V. V. Mikhailov, “Asymptotic behavior of the neutral curves of the linear stability problem for a laminar boundary layer,” Fluid Dyn. 16 (5), 669–674 (1981).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Bogdanov
    • 1
  • V. N. Diesperov
    • 2
  • V. I. Zhuk
    • 3
  1. 1.Research Institute of MechanicsMoscow State UniversityMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations