Skip to main content
Log in

Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  2. V. I. Zubov, Lectures on Control Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. S. Walczak, “A note on the controllability of nonlinear systems,” Math. Syst. Theory 17 (4), 351–356 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. L. Lepe, “A geometrical approach to studying the controllability of second-order bilinear systems,” Autom. Remote Control 45 (11), 1401–1406 (1984).

    MATH  Google Scholar 

  5. V. A. Komarov“Design of constrained control signals for nonlinear nonautonomous systems, Autom. Remote Control 45 (10), 1280–1286 (1984).

    MATH  Google Scholar 

  6. A. P. Krishchenko, “Controllability and attainability sets of nonlinear control systems,” Autom. Remote Control 45 (6), 707–713 (1984).

    MATH  Google Scholar 

  7. A. Dirk, “Controllability for polynomial systems,” Lect. Notes Contr. Jnt. Sci. 63, 542–545 (1984).

    MathSciNet  Google Scholar 

  8. A. P. Krishchenko, “Controllability and reachable sets of nonlinear stationary systems,” Kibern. Vychisl. Tekh., No. 62, 3–10 (1984).

    Google Scholar 

  9. V. A. Komarov, “Estimates of reachable sets for linear systems,” Math USSR-Izv. 25 (1), 193–206 (1985).

    Article  MATH  Google Scholar 

  10. O. Huashu, “On the controllability of nonlinear control system,” Comput. Math. 10 (6), 441–451 (1985).

    MATH  Google Scholar 

  11. M. Furi, P. Nistri, and P. Zezza, “Topological methods for global controllability of nonlinear systems,” J. Optim. Theory Appl. 45 (2), 231–256 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Balachandran, “Global and local controllability of nonlinear systems,” JEEE Proc., No. 1, 14–17 (1985).

    MathSciNet  MATH  Google Scholar 

  13. V. P. Panteleev, “On the controllability of nonstationary linear systems,” Differ. Uravn. 21 (4), 623–628 (1985).

    MATH  Google Scholar 

  14. V. I. Korobov, “The almost complete controllability of a linear stationary system,” Ukr. Math. J. 38 (2), 144–149 (1986).

    Article  MATH  Google Scholar 

  15. S. V. Emel’yanov, S. K. Korovin, and I. G. Mamedov, “Criteria for the controllability of nonlinear systems,” Dokl. Akad. Nauk SSSR 290 (1), 18–22 (1986).

    MathSciNet  Google Scholar 

  16. G. I. Konstantinov and G. V. Sidorenko, “External estimates for reachable sets of controllable systems,” Izv. Akad. Nauk SSSR Tekh. Kibern., No. 3, 28–34 (1986).

    Google Scholar 

  17. F. L. Chernous’ko and A. A. Yangin, “Approximation of reachable sets with the help of intersections and unions of ellipsoids,” Izv. Akad. Nauk SSSR Tekh. Kibern., No. 4, 145–152 (1987).

    Google Scholar 

  18. S. A. Aisagaliev, “Controllability of nonlinear control systems,” Izv. Akad. Nauk Kaz. SSR. Fiz. Mat., No. 3, 7–10 (1987).

    MathSciNet  Google Scholar 

  19. Z. Benzaid, “Global null controllability of perturbed linear periodic systems,” JEE Trans. Autom. Control 32 (7), 623–625 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. A. Levakov, “On the controllability of linear nonstationary systems,” Differ. Uravn. 23 (5), 798–806 (1987).

    MathSciNet  MATH  Google Scholar 

  21. K. Balachandran, “Controllability of a class of perturbed nonlinear systems,” Kybernetika 24, 61–64 (1988).

    MathSciNet  MATH  Google Scholar 

  22. A. V. Lotov, “External estimates and construction of attainability sets for controlled systems,” Comput. Math. Math. Phys. 30 (2), 93–97 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. A. Aisagaliev, “On the theory of the controllability of linear systems,” Autom. Remote Control 52 (2), 163–171 (1991).

    MathSciNet  Google Scholar 

  24. S. N. Popova, “Local attainability for linear control systems,” Differ. Equations 39 (1), 51–58 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. I. Berdyshev, “On the constriction of a reachable set in a nonlinear problem,” Izv. Ross. Akad. Nauk Teor. Sist. Upr., No. 4, 22–26 (2006).

    Google Scholar 

  26. A. N. Kvitko, “On a control problem,” Differ. Equations 40 (6), 789–796 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  28. V. N. Afanas’ev, V. B. Kolmanovskii, and V. R. Nosov, Mathematical Theory of the Design of Control Systems (Vysshaya Shkola, Moscow, 1998) [in Russian].

    Google Scholar 

  29. K. Balachandran and V. Govindaraj, “Numerical controllability of fractional dynamical systems,” Optimization 63 (6), 1267–1279 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Balachandran, V. Govindaraj, M. Rivero, and J. J. Trujillo, “Controllability of fractional damped dynamical systems,” Appl. Math. Comput. 257, 66–73 (2015).

    MathSciNet  MATH  Google Scholar 

  31. E. Ya. Smirnov, Stabilization of Programmed Motions (S.-Peterb. Univ., St. Petersburg, 1997) [in Russian].

    Google Scholar 

  32. E. A. Barbashin, Introduction to Stability Theory (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kvitko.

Additional information

Original Russian Text © A.N. Kvitko, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 1, pp. 70–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvitko, A.N. Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls. Comput. Math. and Math. Phys. 58, 65–77 (2018). https://doi.org/10.1134/S0965542518010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518010104

Keywords

Navigation