Skip to main content
Log in

Studies on the Zeroes of Bessel Functions and Methods for Their Computation: IV. Inequalities, Estimates, Expansions, etc., for Zeros of Bessel Functions

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is the fourth in a series of survey articles concerning zeros of Bessel functions and methods for their computation. Various inequalities, estimates, expansions, etc. for positive zeros are analyzed, and some results are described in detail with proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahmed and F. Calogero, “On the zeros of Bessel functions III,” Lett. Nuovo Cimento 21, 311–314 (1978).

    Article  MathSciNet  Google Scholar 

  2. P. E. Ricci, “On asymptotic formulas for the first zero of the Bessel function,” J. Inf. Optim. Sci. 17 (2), 267–274 (1996).

    MathSciNet  MATH  Google Scholar 

  3. L. G. Chambers, “An upper bound for the first zero of Bessel functions,” Math. Comput. 38 (156), 589–591 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Döring“Über die Doppelnullstellen der Ableitung der Besselfunktion,” Angew. Inf. 13 (9), 402–406 (1971).

    Google Scholar 

  5. Á. Elbert, “Some inequalities concerning Bessel functions of first kind,” Stud. Sci. Math. Hung. 6, 277–285 (1971).

    MathSciNet  MATH  Google Scholar 

  6. Á. Elbert, “Concavity of the zeros of Bessel functions,” Stud. Sci. Math. Hung. 12, 81–88 (1977).

    MathSciNet  MATH  Google Scholar 

  7. Á. Elbert, “An approximation for the zeros of Bessel functions,” Numer. Math. 59 (7), 647–657 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. Á. Elbert, L. Gatteschi, and A. Laforgia, “On the concavity of zeros of Bessel functions,” Appl. Anal. 16 (4), 261–278 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. Á. Elbert and A. Laforgia, “An asymptotic relation for the zeros of Bessel functions,” J. Math. Anal. Appl. 98 (2), 502–511 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  10. Á. Elbert and A. Laforgia, “On the square of zeros of Bessel functions,” SIAM J. Math. Anal. 15, 206–212 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. Á. Elbert and A. Laforgia, “Further results on the zeros of Bessel functions,” Analysis 5, 71–86 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. Á. Elbert and A. Laforgia, “Monotonicity properties of zeros of Bessel functions,” SIAM J. Math. Anal. 17, 1483–1488 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. Á. Elbert and A. Laforgia, “A lower bound for the zeros of Bessel functions,” World Sci. Ser. Appl. Anal. 3, 179–185 (1994).

    MathSciNet  MATH  Google Scholar 

  14. Á. Elbert and A. Laforgia, “An upper bound for the zeros of the derivative of Bessel functions,” Rend. Circ. Mat. Palermo 46 (1), 123–130 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. Á. Elbert and A. Laforgia, “An upper bound for the zeros of the cylinder function C ν(x),” Math. Inequalities Appl. 1 (1), 105–111 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. Á. Elbert and A. Laforgia“Asymptotic expansion for zeros of Bessel functions and of their derivatives for large order,” Atti Semin. Math. Fis. Univ. Modena 46, Suppl. 685–695 (1998).

    MathSciNet  MATH  Google Scholar 

  17. A. Gasser“Über die Nullstellen der Besselschen Funktionen,” Mitt. Naturforsch. Ges. Bern, No. 1580, 92–135 (1904).

  18. L. Gatteschi, “Valutazione dell errore nella formula di McMahon per gli zeri delle J n (x) di Bessel nel caso 0 ≤ n ≤ 1,” Rev. Mat. Univ. Parma 1, 347–362 (1950).

    MATH  Google Scholar 

  19. L. Gatteschi, “Sugli zeri della derivata delle funzioni di Bessel di prima specie,” Boll. Unione Mat. Ital. 10 (1), 43–47 (1955).

    MathSciNet  MATH  Google Scholar 

  20. L. Gatteschi, Funzioni Speciali (UTET, Torino, 1973).

    MATH  Google Scholar 

  21. L. Gatteschi and A. Laforgia, “Nuove disuguaglianze per il primo zero ed il primo massimo della funzione di Bessel J ν(x),” Rend. Semin. Mat. Univ. Politech. Torino 34, 441–424 (1975).

    MathSciNet  MATH  Google Scholar 

  22. L. Gatteschi and A. Laforgia, “Elementary approximations for zeros of Bessel functions,” J. Comput. Appl. Math. 9 (3), 221–228 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Giordano and A. Laforgia, “Elementary approximations for zeros of Bessel functions,” J. Comput. Appl. Math. 9 (3), 221–228 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Hačik and E. Michalikova, “A note on monotonicity of zeros of Bessel functions as functions of order,” Pr. Stud. Vys. Sk. Dopravy Spojov Ziline, Ser. Mat. Fyz. Rok. 7, 7–13 (1989).

    MathSciNet  Google Scholar 

  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).

    MATH  Google Scholar 

  26. J. Heinhold and U. Kulish“Über die Nullstellen der ersten Ableitung von Besselfunktionen,” Computing 1, 119–126 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  27. H. W. Hethcote, “Bounds for zeros of some special functions,” Proc. Am. Math. Soc. 25 (1), 72–74 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. W. Hethcote, “Error bounds for asymptotic approximations of zeros of transcendental functions,” SIAM J. Math. Anal. 1 (9), 147–152 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Hurwitz“Über die Nullstellen der Besselschen Funktion,” Math. Ann. 33, 246–266 (1889).

  30. E. K. Ifantis and P. D. Siafarikas, “An inequality related the zeros of two ordinary Bessel functions,” Appl. Anal. 19 (9), 251–263 (1985).

    MathSciNet  MATH  Google Scholar 

  31. E. K. Ifantis and P. D. Siafarikas, “A differential equations for the zeros of Bessel functions,” Appl. Anal. 20, 269–281 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  32. E. K. Ifantis and P. D. Siafarikas, “Differential inequalities for the positive zeros of Bessel functions,” J. Comput. Appl. Math. 30 (2), 139–143 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. E. K. Ifantis and P. D. Siafarikas, “Inequalities involving Bessel and modified Bessel functions,” J. Math. Anal. Appl. 147, 214–227 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. K. Ifantis and P. D. Siafarikas, “A result on the imaginary zeros of Jν(z),” J. Approx. Theory 62 (2), 192–196 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  35. E. K. Ifantis, P. D. Siafarikas, and C. B. Kouris, “The imaginary zeros of a mixed Bessel function,” Z. Angew. Math. Phys. 39 (2), 157–165 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  36. E. K. Ifantis, C. G. Kokologiannaki, and C. B. Kouris, “On the positive zeros of the second derivative of Bessel functions,” J. Comput. Appl. Math. 34 (1), 21–31 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  37. E. K. Ifantis, P. D. Siafarikas, and C. B. Kouris, “Upper bounds for the first zeros of Bessel functions,” J. Comput. Appl. Math. 17 (3), 355–358 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. E. H. Ismail, “On zeros of Bessel functions,” Appl. Anal. 22, 167–168 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. E. H. Ismail and M. E. Muldoon, “On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions,” J. Math. Anal. Appl. 135 (1), 187–207 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. E. H. Ismail and M. E. Muldoon, “Zeros of combinations of Bessel functions and their derivatives,” Appl. Anal. 31, 72–90 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. E. H. Ismail and M. E. Muldoon, “Bounds for the small real and purely imaginary zeros of Bessel functions,” Meth. Appl. Anal. 2 (1), 1–21 (1995).

    MathSciNet  MATH  Google Scholar 

  42. M. K. Kerimov“The Rayleigh function: Theory and methods for its calculation,” Comput. Math. Math. Phys. 39 (12) 1883–1925 (1999).

    MathSciNet  MATH  Google Scholar 

  43. M. K. Kerimov“Overview of some results concerning the theory and applications of the Rayleigh special function,” Comput. Math. Math. Phys. 48 (9) 1454–1507 (2008).

    Article  MathSciNet  Google Scholar 

  44. M. K. Kerimov, “Studies on the zeroes of Bessel functions and methods for their computation,” Comput. Math. Math. Phys. 54 (9), 1337–1388 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  45. M. K. Kerimov, “Studies on the zeroes of Bessel functions and methods for their computation: II. Monotonicity, convexity, concavity, and other properties,” Comput. Math. Math. Phys. 56 (7), 1175–1208 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. K. Kerimov, “Studies on the zeroes of Bessel functions and methods for their computation: III. Some new works on monotonicity, convexity, and other properties,” Comput. Math. Math. Phys. 56 (12), 1949–1991 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  47. M. K. Kerimov and S. L. Skorokhodov“Evaluation of complex zeros of Bessel functions J ν(x) and I ν(x),” USSR Comput. Math. Math. Phys. 24 (5) 131–141 (1984).

    Article  MATH  Google Scholar 

  48. M. K. Kerimov and S. L. Skorokhodov, “Calculation of the multiple zeros of the derivatives of the cylindrical Bessel functions Jν(x) and Yν(x),” USSR Comput. Math. Math. Phys. 25 (6), 101–107 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Kishore, “The Rayleigh polynomials,” Proc. Am. Math. Soc. 14, 527–533 (1963).

    Article  MATH  Google Scholar 

  50. C. G. Kokologiannaki, M. E. Muldoon, and P. D. Siafarikas, “A unimodal property of purely imaginary zeros of Bessel and related functions,” Can. Math. Bull. 37 (3), 365–373 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  51. C. G. Kokologiannaki and P. D. Siafarikas, “Nonexistence of complex and pure imaginary zeros of a transcendental equation involving Bessel functions,” Z. Anal. Anwendungen 10, 563–567 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  52. C. G. Kokologiannaki and P. D. Siafarikas, “An alternative proof of the monotonicity of,” Boll. Unione Math. Ital. A 7, 373–376 (1993).

    MathSciNet  MATH  Google Scholar 

  53. A. Laforgia“Sul primo zero della funzione di Bessel,” Rend. Semin. Mat. Univ. Politech. Torino A 35, 419–430.

  54. A. Laforgia, “Inequalities for Bessel functions,” J. Comput. Appl. 15 (1), 75–81 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Laforgia“On the zeros of the derivative of Bessel functions of second kind,” Pubblicazioni Serie III, Vol. 179 (Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome, 1979).

  56. A. Laforgia, “Sugli zeri delle funzioni di Bessel,” Calcolo 17, 211–220 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Laforgia and M. E. Muldoon, “Inequalities and approximations for zeros of Bessel functions of small order,” SIAM J. Math. Anal. 14, 383–388 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Laforgia and M. E. Muldoon, “Monotonicity and concavity properties of zeros of Bessel functions,” J. Math. Anal. Appl. 98 (2), 470–477 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Lang and R. Wong, “Best possible upper bounds for the first two positive zeros of the Bessel function: The infinite case,” J. Comput. Appl. Math. 71, 311–329 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  60. J. T. Lewis and M. E. Muldoon, “Monotonicity and convexity properties of zeros of Bessel functions,” SIAM J. Math. Anal. 8 (1), 171–178 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Lense“Über die Nullstellen der Besselfunktionen und ihrer ersten Ableitungen,” Jahresberichte Deutsch. Math. Verein 43, 146–153 (1933).

  62. L. Lorch, “Some inequalities for the first positive zeros of Bessel functions,” SIAM J. Math. Anal. 24 (3), 814–823 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  63. L. Lorch, M. E. Muldoon, and P. Szego, “Higher monotonicity properties of certain Sturm–Liouville functions III,” Can. J. Math. 22, 1238–1265 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  64. L. Lorch, M. E. Muldoon, and P. Szego, “Higher monotonicity properties of certain Sturm–Liouville functions IV,” Can. J. Math. 24, 349–368 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  65. L. Lorch and P. Szego, “Higher monotonicity properties of certain Sturm–Liouville functions,” Acta Math. 109, 55–73 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  66. L. Lorch and P. Szego, “On the points of inflection of Bessel functions of positive order I,” Can. J. Math. 42 (5), 933–948 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  67. L. Lorch and R. Überti ““Best possible” upper bounds for the positive zeros of the Bessel functions—the finite part,” J. Comput. Appl. Math. 75, 249–258 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  68. R. C. McCann, “Lower bounds for the zeros of Bessel functions,” Proc. Am. Math. Soc. 64 (1), 101–103 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  69. R. C. McCann, “Inequalities for the zeros of Bessel functions,” SIAM J. Math. Anal. 8 (1), 166–170 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  70. R. C. McCann, “Monotonicity properties of zeros of Bessel functions,” Abstracts Am. Math. Soc. 2, 105 (1981).

    Google Scholar 

  71. N. N. Meiman, “On recurrence formulas for power sums of zeros of Bessel functions,” Dokl. Akad. Nauk SSSR 108 (2), 190–193 (1956).

    MathSciNet  MATH  Google Scholar 

  72. A. McD.Mercer, “The zeros of az 2 Jv (z) + bzJ v′(z) + c J ν(z) as functions of order,” Int. J. Math. Math. Sci. 15 (2), 319–322 (1992).

    Article  Google Scholar 

  73. M. E. Muldoon, “Higher monotonicity properties of certain Sturm–Liouville functions V,” Proc. R. Soc. Edinburgh, Sect. A 77, 23–37 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  74. I. Nicolo-Amati Gori, L. Laforgia, and M. E. Muldoon, “Higher monotonicity properties and inequalities for zeros of Bessel functions,” Proc. Am. Math. Soc. 112 (2), 513–520 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  75. F. W. J. Olver, “A further method for evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order,” Proc. Cambridge Philos. Soc. 47, 692–712 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  76. F. W. J. Olver, “The asymptotic expansion of Bessel functions of large order,” Philos. Trans. R. Soc. London Ser. A 247, 323–368 (1954).

    MathSciNet  Google Scholar 

  77. F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974).

    MATH  Google Scholar 

  78. R. Piessens, “A series expansion for the first positive zero of Bessel function,” Math. Comput. 42, 195–197 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  79. Lord Rayleigh, “Note on the numerical calculation on the roots of fluctuating functions,” Proc. London Math. Soc. 5, 119–124 (1874) (Scientific Papers (Dover, New York, 2964), Vol. 1).

    MathSciNet  MATH  Google Scholar 

  80. A. D. Rawlins“A new class of Bessel function inequality useful for investigation the roots of a class of transcendental equation involving Bessel functions,” Proc. R. Soc. Edinburg A 74, 231–238.

  81. H. M. Schwarz, “A class of continued fractions,” Duke Math. J. 6, 48–65 (1940).

    Article  MathSciNet  Google Scholar 

  82. R. Spigler, “Sulle radici delll’equazione A ν(x) + B x Jν(x) = 0,” Atti Semin. Mat. Fis. Univ. Modena 24, 399–419 (1975).

    MathSciNet  Google Scholar 

  83. F. G. Tricomi, “Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica,” Ann. Mat. Pura Appl. 26 (4), 283–300 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  84. F. G. Tricomi, “Sulle funzioni di Bessel di ordine e argomento pressoche uguali,” Atti Accad. Sci. Torino CI. Sci. Fis. Mat. Nat. 83, 3–20 (1949).

    MATH  Google Scholar 

  85. G. N. Watson, A Treatise of the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1944).

    MATH  Google Scholar 

  86. R. Wong and T. Lang, “On the points of inflections of Bessel functions of positive order II,” Can. J. Math. 43 (2), 628–651 (1991).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Kerimov.

Additional information

Original Russian Text © M.K. Kerimov, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 1, pp. 3–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerimov, M.K. Studies on the Zeroes of Bessel Functions and Methods for Their Computation: IV. Inequalities, Estimates, Expansions, etc., for Zeros of Bessel Functions. Comput. Math. and Math. Phys. 58, 1–37 (2018). https://doi.org/10.1134/S0965542518010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518010086

Keywords

Navigation