Skip to main content
Log in

Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Numerical simulation was used to study the 3D supersonic flow over a segment-conical body similar in shape to the ExoMars space vehicle. The nonmonotone behavior of the normal force acting on the body placed in a supersonic gas flow was analyzed depending on the angle of attack. The simulation was based on the numerical solution of the unsteady Reynolds-averaged Navier–Stokes equations with a two-parameter differential turbulence model. The solution of the problem was obtained using the in-house solver HSFlow with an efficient parallel algorithm intended for multiprocessor super computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Methodological Research Foundations for Justification of Space Research Programs, Prospective Space Modules and Systems, and Their Scientific and Technical Maintenance, Vol. 4: Methodology of Research in Aero- and Thermodynamics and Thermal Conditions Associated with Spaceship Design (Dashkov i Ko, Moscow, 2016) [in Russian].

  2. K. P. Petrov, Aerodynamics of Bodies of Simple Geometry (Fizmatlit, Moscow, 1998).

    Google Scholar 

  3. S. N. Aleksashkin, A. V. Luk’yanchikov, M. B. Martynov, and V. V. Khartov, “Design concept of the ExoMars- 2018 lander to be created at Lavochkin research and production association,” Vestn. Nauchno-Proizvod. Ob”ed. im. S.A. Lavochkina, No. 2, 5–12 (2014).

    Google Scholar 

  4. V. A. Bashkin and I. V. Egorov, Numerical Simulation of Viscous Perfect Gas (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  5. V. A. Bashkin and I. V. Egorov, Numerical Study of Exterior and Interior Aerodynamic Problems (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  6. I. V. Yegorov and O. L. Zaitsev, “An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method,” USSR Comput. Math. Math. Phys. 31 (2), 80–89 (1991).

    Google Scholar 

  7. I. V. Egorov and A. V. Novikov, “Direct numerical simulation of laminar–turbulent flow over a flat plate at hypersonic flow speeds,” Comput. Math. Math. Phys. 56 (6), 1048–1064 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. G. Marvin and T. J. Coakley“Turbulence modeling for hypersonic flows,” The Third Joint Europe/US Short Course in Hypersonics at the RWTH Aachen (University of Technology, Aachen, 1990).

    Google Scholar 

  9. S. K. Godunov, “Difference method for computing discontinuous solutions of fluid dynamics equations,” Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  MATH  Google Scholar 

  10. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comp. Phys. 43, 357–372 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous gas flows,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 3 (6), 68–77 (1972).

    Google Scholar 

  13. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Ya. Ivanov, V. G. Krupa, and R. Z. Nigmatullin, “A high-accuracy version of Godunov’s implicit scheme for integrating the Navier–Stokes equations,” USSR Comput. Math. Math. Phys. 29 (3), 170–179 (1989).

    Article  MATH  Google Scholar 

  15. T. Kh. Karimov, “On certain iterative methods for solving nonlinear equations in Hilbert spaces,” Dokl. Akad. Nauk SSSR 269 (5), 1038–1046 (1983).

    MathSciNet  Google Scholar 

  16. Y. Saad and M. H. Shultz, “GMRes: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856–869 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Yu. Babaev, V. A. Bashkin, and I. V. Egorov, “Numerical solution of the Navier–Stokes equations using variational iteration methods,” Comput. Math. Math. Phys. 34 (11), 1455–1462 (1994).

    MathSciNet  MATH  Google Scholar 

  18. CFD General Notation System (2015). https://cgns.github.io. Accessed April 28, 2015.

  19. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, http://www.mcs.anl.gov/petsc. Accessed September 20, 2015.

    Google Scholar 

  20. V. A. Bashkin, I. V. Egorov, and N. V. Palchekovskaya, “The interaction of shock waves with a boundary layer on a sharp plate and a blunted plate,” High Temp. 54 (3), 356–369 (2016).

    Article  Google Scholar 

  21. Yu. S. Kachanov, V. V. Kozlov, and V. Ya. Levchenko, Onset of Turbulence in Boundary Layers (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Palchekovskaya.

Additional information

Original Russian Text © I.V. Egorov, A.V. Novikov, N.V. Palchekovskaya, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 1, pp. 123–135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, I.V., Novikov, A.V. & Palchekovskaya, N.V. Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations. Comput. Math. and Math. Phys. 58, 118–129 (2018). https://doi.org/10.1134/S0965542518010049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518010049

Keywords

Navigation