Skip to main content
Log in

Asymptotics of the Spectrum of a Linearized Problem of the Stability of a Stationary Flow of an Incompressible Polymer Fluid with a Space Charge

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An asymptotic formula for the spectrum of a linearized problem of the stability of stationary flows of a polymer fluid with a space charge is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Koshelev, G. V. Pyshnograi, A. E. Kuznetsov, and M. Yu. Tolstykh, “Temperature dependence of hydrodynamic characteristics of polymer melt flows in converging channels,” Mekh. Kompozit. Mater. Konstrukt. 22 (2), 175–191 (2016).

    Google Scholar 

  2. G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, I. F. Obraztsov, and Yu. N. Karnet, “Constitutive equation of nonlinear viscoelastic (polymer) media in the zeroth approximation with respect to molecular theory parameters and implications for shear and tension,” Dokl. Akad. Nauk 355 (9), 612–615 (1994).

    Google Scholar 

  3. V. S. Volkov and G. V. Vinogradov, “Molecular theories of nonlinear viscoelasticity of polymers,” Rheol. Acta 23 (3), 231–237 (1984).

    Article  Google Scholar 

  4. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed. (Springer, Berlin, 2010).

    Book  Google Scholar 

  5. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymer Systems (Alt. Gos. Ped. Akad., Barnaul, 2012) [in Russian].

    Google Scholar 

  6. J. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 200, 523–541 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, Oxford, 1972; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  8. G. V. Pyshnograi, A. S. Gusev, and V. N. Pokrovski, “Constitutive equations for weakly entangled linear polymers,” J. Non-Newtonian Fluid Mech. 16 (1–3), 17–28 (2009).

    Article  Google Scholar 

  9. Yu. L. Kuznetsova, O. I. Skul’skii, and G. V. Pyshnograi, “Nonlinear viscoelastic flow in a plane channel driven by a given pressure gradient,” Vychisl. Mekh. Sploshnykh Sred 3 (2), 55–69 (2010).

    Google Scholar 

  10. N. V. Bambaeva and A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid,” Comput. Math. Math. Phys. 54 (5), 874–899 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. M. Blokhin and A. S. Rudometova, “Stationary solutions of the equations for nonisothermal electroconvection of a weakly conducting incompressible polymeric liquid,” J. Appl. Ind. Math. 9 (2), 147–156 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. N. Krylov, “On the stability of the Poiseuille flow in a two-dimensional channel,” Dokl. Akad. Nauk SSSR 159 (5), 978–981 (1964).

    MathSciNet  Google Scholar 

  13. W. Heisenberg“Über Stabilitat und Turbulenz von Flussingkeitsstromen,” Ann. Phys. 74, 577–627 (1924).

  14. E. Grenier, Y. Guo, and T. T. Nguyen, “Spectral instability of characteristic boundary layer flows,” Duke Math. J. 165 (16), 3085–3146 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. N. Mordvinov and B. L. Smorodin, “Electroconvection under injection from cathode and heating from above,” J. Exp. Theor. Phys. 114 (5), 870–877 (2012).

    Article  Google Scholar 

  16. A. V. Taraut and B. L. Smorodin, “Electroconvection in the presence of autonomous unipolar injection and residual conductivity,” J. Exp. Theor. Phys. 115 (2), 361–370 (2012).

    Article  Google Scholar 

  17. B. L. Smorodin and A. V. Taraut, “Dynamics of electroconvective wave flows in a modulated electric field,” J. Exp. Theor. Phys. 118 (1), 158–166 (2014).

    Article  Google Scholar 

  18. A. M. Blokhin, A. V. Yegitov, and D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel,” Comput. Math. Math. Phys. 55 (5), 848–873 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. M. Blokhin and D. L. Tkachev, “Linear asymptotic instability of a stationary polymer flow in a plane channel in the case of periodic perturbations,” Sib. Zh. Ind. Mat. 17 (3), 13–25 (2014).

    MATH  Google Scholar 

  20. G. D. Birkhoff, Collected Mathematical Papers (Am. Math. Soc., New York, 1950).

    MATH  Google Scholar 

  21. K. V. Brushlinskii, “On the growth of the solution of a mixed problem in the case of incompleteness of the eigenfunctions,” Izv. Akad. Nauk SSSR, Ser. Mat. 23, 893–912 (1959).

    Google Scholar 

  22. S. A. Lomov, Introduction to the General Theory of Singular Perturbations (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Blokhin.

Additional information

Original Russian Text © A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 1, pp. 108–122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Yegitov, A.V. & Tkachev, D.L. Asymptotics of the Spectrum of a Linearized Problem of the Stability of a Stationary Flow of an Incompressible Polymer Fluid with a Space Charge. Comput. Math. and Math. Phys. 58, 102–117 (2018). https://doi.org/10.1134/S0965542518010037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518010037

Keywords

Navigation