Abstract
An algorithm for improving the scalability of the multigrid method used for solving the system of difference equations obtained by the finite volume discretization of the Navier–Stokes equations on unstructured grids with an arbitrary cell topology is proposed. It is based on the cascade assembly of the global level; the cascade procedure gradually decreases the number of processors involved in the computations. Specific features of the proposed approach are described, and the results of solving benchmark problems in the dynamics of viscous incompressible fluid are discussed; the scalability and efficiency of the proposed method are estimated. The advantages of using the global level in the parallel implementation of the multigrid method which sometimes makes it possible to speed up the computations by several fold.
Similar content being viewed by others
References
A. S. Kozelkov and V. V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows,” Comput. Math. Math. Phys. 55, 135–146 (2015).
Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003).
K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods for Speeding Up Fluid Dynamics Computations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].
A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev and A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications,” Comput. Math. Math. Phys. 56, 1506–1516 (2016).
K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, and I. V. Teterina, “The algebraic multigrid method in computational physics,” Vychisl. Metody. Program. 15 (1), 183–200 (2014).
R. P. Fedorenko, “A relaxation method for solving difference elliptic equations,” Zh. Vychisl. Mat. Mat. Fiz. 1, 922–927 (1961).
N. V. Bakhvalov, “On the convergence of a relaxation method for the elliptic operator subject to natural constraints,” Zh. Vychisl. Mat. Mat. Fiz. 6 (5), 101–135 (1966).
A. Brandt, “Guide to multigrid development,” Lect. Notes Math. 960, 220–312 (1982).
K. Stüben and U. Trottenberg, “Multigrid methods: Fundamental algorithms, model problem analysis and applications,” Lect. Notes Math. (Springer, Berlin, 1982), Vol. 960, pp. 1–176.
J. Ruge and K. Stüben, “Algebraic multigrid (AMG),”in Multigrid Methods. Frontiers in Applied Mathematics, ed. by S. F. McCormick (SIAM, Philadelphia, 1987), Vol. 3, pp. 73–130.
C. Wagner, Introduction to Algebraic Multigrid: Course Notes of an Algebraic Multigrid Course (University of Heidelberg, 1999).
A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteu, S. F. McCormick, G. N. Miranda, and J. W. Ruge, “Robustness and scalability of algebraic multigrid,” SIAM J. Sci. Statistical Comput. 21, 1886–1908 (2000).
K. Stüben, “A review of algebraic multigrid,” J. Comput. Appl. Math. 128 (1–2), 281–309 (2001).
K. Stüben, “An introduction to algebraic multigrid,”in Multigrid, ed. by U. Trottenberg, C. Oosterlee, and A. Schüller (Academic, London, 2001), pp. 413–532.
A. S. Kozelkov, Yu. N. Deryugin, S. V. Lashkin, D. P. Silaev, P. G. Simonov, and E. S. Tyatyushkina, “Implementation of the multigrid method for calculating the viscous incompressible fluid using the SIMPLE algorithm in the LOGOS software package,” Vopr. At. Nauki Tekh., Ser. Mat. Modelir. Fiz. Protsess., No. 4, 44–56 (2013).
P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid based on smoothed aggregation for second and fourth order problems,” Computing 56 (2), 179–196 (1996).
C. Farris and M. Misra, “Distributed algebraic multigrid for finite element computations,” Math. Comput. Modelling 27 (8), 41–67 (1998).
H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners,” SIAM J. Matrix Anal. Appl. 27, 1019–1039 (2006).
M. Emans, “Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows,” Parallel Comput. 36 (5–6), 326–338 (2010).
M. Emans, “Benchmarking aggregation AMG for linear systems in CFD simulations of compressible internal flows,” Electron. Trans. Numer. Anal. 37, 351–366 (2010).
J. M. Weiss, J. P. Maruszewski, and W. A. Smith, “Implicit solution of preconditioned Navier–Stokes equations using algebraic multigrid,” AIAA J. 37, 29–36 (1999).
A. Napov and Y. Notay, “An algebraic multigrid method with guaranteed convergence rate,” Technical Rept. No. GANMN 10-03, University of Brussels, 2010.
Y. Notay, “An aggregation-based algebraic multigrid method,” Electron. Trans. Numer. Anal. 37, 123–146 (2010).
M. Sala and R. S. Tuminaro, “A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems,” SIAM J. Sci. Comput. 31, 143–166 (2008).
P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro, “Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport,” Int. J. Numer. Meth. Eng. 67, 208–225 (2006).
V. Gravemeier, M. W. Gee, M. Kronbichler, and W. A. Wall, “An algebraic variational multiscale–multigrid method for large eddy simulation of turbulent flow,” Comput. Meth. Appl. Mech. Eng. 199, 853–864 (2010).
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, “Adaptive algebraic multigrid,” SIAM J. Sci. Comput. 27, 1261–1286 (2005).
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, “Adaptive smoothed aggregation ( SA),” SIAM J. Sci. Comput. 25, 1896–1920 (2004).
H. van Emden and U. Meier-Yang, “BoomerAMG: A parallel algebraic multigrid solver and preconditioner,” Appl. Numer. Math. 41, 155–177 (2001).
V. T. Zhukov, M. M. Krasnov, N. D. Novikova, and O. B. Feodoritova, “Parallel multigrid method: Comparing efficiency on modern computer architectures,”Preprint No. 31, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, 2014).
P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr, and S. Kennon, “Towards extreme-scale simulations with next-generation Trilinos: A low Mach fluid application case study,”in Workshop on Large-Scale Parallel Processing (LSPP), Phoeniz, AZ, 2014.
D. Braess, “Towards algebraic multigrid for elliptic problems of second order,” Computing 55, 379–393 (1995).
H. Guillard, A. Janka, and P. Vanek, “Analysis of an algebraic Petrov–Galerkin smoothed aggregation multigrid method,” Appl. Numer. Math. 58, 1861–1874 (2008).
M. S. Darwish, T. Saad, and Z. Hamdan, “A high scalability parallel algebraic multigrid solver,” in Proc. European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, Netherlands. 2006.
U. M. Yang, “Parallel algebraic multigrid methods—high performance preconditioners,”in Numerical Solution of Partial Differential Equations on Parallel Computers, ed. by A. M. Bruaset and A. Tveito (Springer, 2006), Vol. 51, pp. 209–236.
A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, and O. L. Puchkova, “Simulation of turbulent flows of viscous incompressible fluid on unstructured grids using the model of detached eddies,” Mat. Model. 26 (8), 81–96 2014.
V. P. Gergel’ and R. G. Strongin, Foundations of Parallel Computing on Multiprocessor Computers (Nizh. Novgorod. Gos. Univ., Nizhny Novgorod, 2000) [in Russian].
J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin 2002).
J. C. Vogel and J. K. Eaton, “Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step,” J. Heat Transfer 107, 922–929 (1985).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © K.N. Volkov, A.S. Kozelkov, S.V. Lashkin, N.V. Tarasova, A.V. Yalozo, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 12, pp. 2079–2097.
Rights and permissions
About this article
Cite this article
Volkov, K.N., Kozelkov, A.S., Lashkin, S.V. et al. A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid. Comput. Math. and Math. Phys. 57, 2030–2046 (2017). https://doi.org/10.1134/S0965542517120119
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965542517120119