Skip to main content
Log in

A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An algorithm for improving the scalability of the multigrid method used for solving the system of difference equations obtained by the finite volume discretization of the Navier–Stokes equations on unstructured grids with an arbitrary cell topology is proposed. It is based on the cascade assembly of the global level; the cascade procedure gradually decreases the number of processors involved in the computations. Specific features of the proposed approach are described, and the results of solving benchmark problems in the dynamics of viscous incompressible fluid are discussed; the scalability and efficiency of the proposed method are estimated. The advantages of using the global level in the parallel implementation of the multigrid method which sometimes makes it possible to speed up the computations by several fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Kozelkov and V. V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows,” Comput. Math. Math. Phys. 55, 135–146 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003).

    Book  MATH  Google Scholar 

  3. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods for Speeding Up Fluid Dynamics Computations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  4. A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev and A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications,” Comput. Math. Math. Phys. 56, 1506–1516 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, and I. V. Teterina, “The algebraic multigrid method in computational physics,” Vychisl. Metody. Program. 15 (1), 183–200 (2014).

    Google Scholar 

  6. R. P. Fedorenko, “A relaxation method for solving difference elliptic equations,” Zh. Vychisl. Mat. Mat. Fiz. 1, 922–927 (1961).

    MATH  Google Scholar 

  7. N. V. Bakhvalov, “On the convergence of a relaxation method for the elliptic operator subject to natural constraints,” Zh. Vychisl. Mat. Mat. Fiz. 6 (5), 101–135 (1966).

    Google Scholar 

  8. A. Brandt, “Guide to multigrid development,” Lect. Notes Math. 960, 220–312 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Stüben and U. Trottenberg, “Multigrid methods: Fundamental algorithms, model problem analysis and applications,” Lect. Notes Math. (Springer, Berlin, 1982), Vol. 960, pp. 1–176.

    Google Scholar 

  10. J. Ruge and K. Stüben, “Algebraic multigrid (AMG),”in Multigrid Methods. Frontiers in Applied Mathematics, ed. by S. F. McCormick (SIAM, Philadelphia, 1987), Vol. 3, pp. 73–130.

    Chapter  Google Scholar 

  11. C. Wagner, Introduction to Algebraic Multigrid: Course Notes of an Algebraic Multigrid Course (University of Heidelberg, 1999).

    Google Scholar 

  12. A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteu, S. F. McCormick, G. N. Miranda, and J. W. Ruge, “Robustness and scalability of algebraic multigrid,” SIAM J. Sci. Statistical Comput. 21, 1886–1908 (2000).

    Article  MathSciNet  Google Scholar 

  13. K. Stüben, “A review of algebraic multigrid,” J. Comput. Appl. Math. 128 (1–2), 281–309 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Stüben, “An introduction to algebraic multigrid,”in Multigrid, ed. by U. Trottenberg, C. Oosterlee, and A. Schüller (Academic, London, 2001), pp. 413–532.

    Google Scholar 

  15. A. S. Kozelkov, Yu. N. Deryugin, S. V. Lashkin, D. P. Silaev, P. G. Simonov, and E. S. Tyatyushkina, “Implementation of the multigrid method for calculating the viscous incompressible fluid using the SIMPLE algorithm in the LOGOS software package,” Vopr. At. Nauki Tekh., Ser. Mat. Modelir. Fiz. Protsess., No. 4, 44–56 (2013).

    Google Scholar 

  16. P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid based on smoothed aggregation for second and fourth order problems,” Computing 56 (2), 179–196 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Farris and M. Misra, “Distributed algebraic multigrid for finite element computations,” Math. Comput. Modelling 27 (8), 41–67 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners,” SIAM J. Matrix Anal. Appl. 27, 1019–1039 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Emans, “Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows,” Parallel Comput. 36 (5–6), 326–338 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Emans, “Benchmarking aggregation AMG for linear systems in CFD simulations of compressible internal flows,” Electron. Trans. Numer. Anal. 37, 351–366 (2010).

    MathSciNet  MATH  Google Scholar 

  21. J. M. Weiss, J. P. Maruszewski, and W. A. Smith, “Implicit solution of preconditioned Navier–Stokes equations using algebraic multigrid,” AIAA J. 37, 29–36 (1999).

    Article  Google Scholar 

  22. A. Napov and Y. Notay, “An algebraic multigrid method with guaranteed convergence rate,” Technical Rept. No. GANMN 10-03, University of Brussels, 2010.

    Google Scholar 

  23. Y. Notay, “An aggregation-based algebraic multigrid method,” Electron. Trans. Numer. Anal. 37, 123–146 (2010).

    MathSciNet  MATH  Google Scholar 

  24. M. Sala and R. S. Tuminaro, “A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems,” SIAM J. Sci. Comput. 31, 143–166 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro, “Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport,” Int. J. Numer. Meth. Eng. 67, 208–225 (2006).

    Article  MATH  Google Scholar 

  26. V. Gravemeier, M. W. Gee, M. Kronbichler, and W. A. Wall, “An algebraic variational multiscale–multigrid method for large eddy simulation of turbulent flow,” Comput. Meth. Appl. Mech. Eng. 199, 853–864 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, “Adaptive algebraic multigrid,” SIAM J. Sci. Comput. 27, 1261–1286 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, “Adaptive smoothed aggregation ( SA),” SIAM J. Sci. Comput. 25, 1896–1920 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  29. H. van Emden and U. Meier-Yang, “BoomerAMG: A parallel algebraic multigrid solver and preconditioner,” Appl. Numer. Math. 41, 155–177 (2001).

    MathSciNet  MATH  Google Scholar 

  30. V. T. Zhukov, M. M. Krasnov, N. D. Novikova, and O. B. Feodoritova, “Parallel multigrid method: Comparing efficiency on modern computer architectures,”Preprint No. 31, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, 2014).

    Google Scholar 

  31. P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr, and S. Kennon, “Towards extreme-scale simulations with next-generation Trilinos: A low Mach fluid application case study,”in Workshop on Large-Scale Parallel Processing (LSPP), Phoeniz, AZ, 2014.

    Google Scholar 

  32. D. Braess, “Towards algebraic multigrid for elliptic problems of second order,” Computing 55, 379–393 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Guillard, A. Janka, and P. Vanek, “Analysis of an algebraic Petrov–Galerkin smoothed aggregation multigrid method,” Appl. Numer. Math. 58, 1861–1874 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. S. Darwish, T. Saad, and Z. Hamdan, “A high scalability parallel algebraic multigrid solver,” in Proc. European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, Netherlands. 2006.

    Google Scholar 

  35. U. M. Yang, “Parallel algebraic multigrid methods—high performance preconditioners,”in Numerical Solution of Partial Differential Equations on Parallel Computers, ed. by A. M. Bruaset and A. Tveito (Springer, 2006), Vol. 51, pp. 209–236.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, and O. L. Puchkova, “Simulation of turbulent flows of viscous incompressible fluid on unstructured grids using the model of detached eddies,” Mat. Model. 26 (8), 81–96 2014.

    MATH  Google Scholar 

  37. V. P. Gergel’ and R. G. Strongin, Foundations of Parallel Computing on Multiprocessor Computers (Nizh. Novgorod. Gos. Univ., Nizhny Novgorod, 2000) [in Russian].

    Google Scholar 

  38. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin 2002).

    Book  MATH  Google Scholar 

  39. J. C. Vogel and J. K. Eaton, “Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step,” J. Heat Transfer 107, 922–929 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yalozo.

Additional information

Original Russian Text © K.N. Volkov, A.S. Kozelkov, S.V. Lashkin, N.V. Tarasova, A.V. Yalozo, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 12, pp. 2079–2097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Kozelkov, A.S., Lashkin, S.V. et al. A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid. Comput. Math. and Math. Phys. 57, 2030–2046 (2017). https://doi.org/10.1134/S0965542517120119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517120119

Keywords

Navigation