Skip to main content
Log in

A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new parallel version of the method LU-SGS (Lower-upper symmetric Gauss-Seidel) based on a multilevel decomposition of the unstructured computational mesh is proposed. The advantages of the proposed approach are demonstrated by computing the supersonic flow around the RAM-C geometry. The method is well scalable when a large number of threads are used on the processor Intel Xeon Phi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Men’shov and Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium,” in A collection of technical papers of the 6th Int. Symp. on CFD, Lake Tahoe, Nevada, 1995, Vol. 2, p. 815.

    Google Scholar 

  2. I. S. Men’shov and Y. Nakamura, “On implicit Godunov’s method with exactly linearized numerical flux,” Comput. Fluids 29, 595–616 (2000).

    Article  MATH  Google Scholar 

  3. D. Sharov, H. Luo, J. D. Baum, and R. Löhner, “Implementation of unstructured grid GMRES + LU-SGS method on shared-memory, cache-based parallel computers,” in AIAA-2000-927—Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000, pp. 10–13.

    Google Scholar 

  4. A. M. Wissink, A. S. Lyrintzis, and R. C. Strawn, “Parallelization of a three-dimensional flow solver for Euler rotorcraft aerodynamics predictions,” AIAA J. 34, 2276–2283 (1996).

    Article  MATH  Google Scholar 

  5. V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, and I. S. Men’shov, “A parallel implementation of an implicit scheme based on the LU-SGS for simulating 3D turbulent flows,” Mat. Model. 26 (10), 64–78 (2014).

    MATH  Google Scholar 

  6. V. A. Titarev, S. V. Utyuzhnikov, and A. V. Chikitkin, “OpenMP + MPI parallel implementation of a numerical method for solving a kinetic equation,” Comput. Math. Math. Phys. 56, 1919–1928 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Cheng M., G. Wang, and H. H. Mian, “Reordering of hybrid unstructured grids for an implicit Navier–Stokes solver based on OpenMP parallelization,” Comput. Fluids, 110, 245–253 (2015).

    Article  MathSciNet  Google Scholar 

  8. E. Otero and P. Eliasson, “Acceleration on stretched meshes with line-implicit LU-SGS in parallel implementation,” Int. J. Comput. Fluid Dynamics 29 (2), 133–149 (2015).

    Article  MathSciNet  Google Scholar 

  9. P. V. Pavlukhin, “Implementation of the parallel LU-SGS for fluid dynamics problems on cluster computers with graphics processing units,” Vestn. Nizhegor. Univ., No. 1, 213–218 (2013).

    Google Scholar 

  10. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Issues of the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  11. E. F. Toro, Riemann Solvers and Numerical Method for Fluid Dynamics (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  12. C. R. Mitchell, “Improved reconstruction schemes for the Navier–Stokes equations on unstructured meshes,” AIAA-94-0642, 1994.

    Google Scholar 

  13. Neal T. Frink, “Assessment of an unstructured-grid method for predicting 3D turbulent viscous f lows,” AIAA-96-0292, 1996.

    Google Scholar 

  14. M. Dumbser, V. A. Titarev, and S. V. Utyuzhnikov, “Implicit multiblock method for solving a kinetic equation on unstructured meshes,” Comput. Math. Math. Phys. 53, 601–615 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. A. Titarev, M. Dumbser M., and S. V. Utyuzhnikov, “Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions,” J. Comput. Phys. 256, 17–33 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. O. Zheleznyakov, P. B. Bogdanov, B. N. Chetverushkin, A. V. Gorobets, and S. A. Sukov, “Extension of the two-level MPI + OpenMP parallelization using OpenCL for fluid dynamics computations on heterogeneous systems,” Vest. Yuzhno-Uralsk. Gos. Univ., Ser. Mat. Model. Progr., No. 9, 76–86 (2011).

    Google Scholar 

  17. A. V. Gorobets, “Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms,” Comput. Math. Math. Phys. 55, 638–69 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular graphs,” J. Parallel Distrib. Comput. 48, 96–129 (1998).

    Article  MATH  Google Scholar 

  19. I. E. Kaporin and O. Yu. Milyukova, “The massively parallel preconditioned conjugate gradient method for the numerical solution of linear algebraic equations,” in Collection of Papers of the Department of Applied Optimization of the Dorodnicyn Computing Center, Russian Academy of Sciences (Vychisl. Tsentr, Ross. Akad. Nauk, Moscow, 2011), pp. 132–157.

    Google Scholar 

  20. F. Grasso and G. Capano, “Modeling of ionizing hypersonic flows in nonequilibrium,” J. Spacecraft Rockets 32 (2), 217–224 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Petrov.

Additional information

Original Russian Text © M.N. Petrov, V.A. Titarev, S.V. Utyuzhnikov, A.V. Chikitkin, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 11, pp. 1895–1905.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, M.N., Titarev, V.A., Utyuzhnikov, S.V. et al. A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh. Comput. Math. and Math. Phys. 57, 1856–1865 (2017). https://doi.org/10.1134/S0965542517110124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517110124

Keywords

Navigation