Skip to main content
Log in

Application of the Jacobi functional equation and the ATS theorem in a quantum optical model

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new method is devised to study the atomic inversion in the model of a two-level atom interacting with a single quantized mode of the (initially coherent) electromagnetic field in an ideal resonant cavity. The method is based on number-theoretic results applied to the approximation of special series, specifically, on the functional equation for Jacobi theta functions and the ATS theorem. New asymptotic formulas are derived, with the help of which the behavior of the atomic inversion function on various time intervals can be determined in detail depending on the parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  2. H. Paul, “Induzierte Emission bei starker Einstrahlung,” Ann. Phys. 466 (7–8), 411–412 (1963).

    Article  MathSciNet  Google Scholar 

  3. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, New York, 2001; Fizmatlit, Moscow, 2005).

    Book  MATH  Google Scholar 

  4. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, London, 1997; Fizmatlit, Moscow, 2003).

    Book  MATH  Google Scholar 

  5. N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: Collapse and revival in a simple quantum model,” Phys. Rev. A 23 (1), 236–247 (1981).

    Article  MathSciNet  Google Scholar 

  6. M. Fleischhauer and W. P. Schleich, “Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes–Cummings model,” Phys. Rev. A 47 (5), 4258–4269 (1993).

    Article  Google Scholar 

  7. W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes–Cummings dynamics of a trapped ion,” Phys. Rev. A 52 (5), 4214–4217 (1995).

    Article  Google Scholar 

  8. S. Karbasi, K. W. Koch, and A. Mafi, “Modal perspective on the transverse Anderson localization of light in disordered optical lattices,” J. Opt. Soc. Am. B 30 (6), 1452–1461 (2013).

    Article  Google Scholar 

  9. H. Azuma and M. Ban, “Equivalence of a compressible inviscid flow and the Bloch vector under the thermal Jaynes–Cummings model,” Physica D: Nonlinear Phenomena 308, 127–135 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. M. Torres, J. Z. Bernád, and G. Alber, “Unambiguous atomic bell measurement assisted by multiphoton states,” Appl. Phys. B 122, 1–11 (2016).

    Article  Google Scholar 

  11. Yu. I. Ozhigov, N. A. Skovoroda, and N. B. Viktorova, “Quantum revivals of a non-Rabi type in a Jaynes–Cummings model,” Theor. Math. Phys. 189 (2), 1673–1679 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. A. Karatsuba, “On an approach to the study of the Jaynes–Cummings sum in quantum optics,” Numer. Algorithms 45, 127–137 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. A. Karatsuba and E. A. Karatsuba, “Application of ATS in a quantum-optical model,” in Analysis and Mathematical Physics (Birkhäuser, Basel, 2009).

    Google Scholar 

  14. A. A. Karatsuba and E. A. Karatsuba, “Resummation formula for collapse and revival in the Jaynes–Cummings model,” J. Phys. A: Math. Theor. 42, 1–16 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Karatsuba and E. A. Karatsuba, “On application of the functional equation of the Jacobi theta function to approximation of atomic inversion in the Jaynes–Cummings model,” Pacific J. Appl. Math. 2 (3), 41–63 (2010).

    MATH  Google Scholar 

  16. A. A. Karatsuba, Basic Analytic Number Theory, 2nd ed. (Nauka, Moscow, 1983; Springer-Verlag Berlin, 1993).

    Google Scholar 

  17. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, London, 1952; Fizmatgiz, Moscow, 1963), Vol. 2.

    MATH  Google Scholar 

  18. A. A. Karatsuba, “Approximation of exponential sums by shorter ones,” Proc. Indian Acad. Sci. Math. Sci. 97, 167–178 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Karatsuba and S. M. Voronin, The Riemann Zeta Function (De Gruyter, Berlin, 1992).

    Book  MATH  Google Scholar 

  20. A. A. Karatsuba and M. A. Korolev, “A theorem on the approximation of a trigonometric sum by a shorter one,” Izv. Math. 71 (2), 341–370 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. A. Karatsuba, “Approximation of sums of oscillating summands in certain physical problems,” J. Math. Phys. 45, 4310–4321 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. A. Karatsuba, “Approximation of exponential sums in the problem on the oscillator motion caused by pushes,” Chebyshev. Sb. 6 (3), 205–224 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Karatsuba.

Additional information

Original Russian Text © E.A. Karatsuba, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 11, pp. 1860–1881.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatsuba, E.A. Application of the Jacobi functional equation and the ATS theorem in a quantum optical model. Comput. Math. and Math. Phys. 57, 1822–1842 (2017). https://doi.org/10.1134/S0965542517110070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517110070

Keywords

Navigation