Skip to main content
Log in

Vector domain decomposition schemes for parabolic equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Clarendon, Berlin, 1999).

    MATH  Google Scholar 

  2. A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory (Springer, Berlin, 2005).

    Book  MATH  Google Scholar 

  3. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  4. A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich, Difference Schemes with Operator Factors (Kluwer Academic, Dordrecht, 2002).

    Book  MATH  Google Scholar 

  5. X.-C. Cai, “Additive Schwarz algorithms for parabolic convection–diffusion equations,” Numer. Math. 60 (1), 41–61 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. X.-C. Cai, “Multiplicative Schwarz methods for parabolic problems,” SIAM J. Sci. Comput. 15 (3), 587–603 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. A. Kuznetsov, “New algorithms for approximate realization of implicit difference schemes,” Sov. J. Numer. Anal. Math. Model 3 (2), 99–114 (1988).

    MATH  Google Scholar 

  8. Yu. A. Kuznetsov, “Overlapping domain decomposition methods for FE-problems with elliptic singular perturbed operators,” Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (SIAM, Philadelphia, 1991), pp. 223–241.

    Google Scholar 

  9. Y. Zhuang and X. H. Sun, “Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations,” SIAM J. Sci. Comput. 24 (1), 335–358 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Zhuang, “An alternating explicit-implicit domain decomposition method for the parallel solution of parabolic equations,” J. Comput. Appl. Math. 206 (1), 549–566 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Sun, “Stability and error analysis on partially implicit schemes,” Numer. Methods Partial Differ. Equations 21 (4), 843–858 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Jun and T.-Z. Mai, “ADI method: Domain decomposition,” Appl. Numer. Math. 56 (8), 1092–1107 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Jun and T.-Z. Mai, “IPIC domain decomposition algorithm for parabolic problems,” Appl. Math. Comput. 177 (1), 352–364 (2006).

    MathSciNet  MATH  Google Scholar 

  14. Y. Jun and T.-Z. Mai, “Numerical analysis of the rectangular domain decomposition method,” Commun. Numer. Methods Eng. 25 (7), 810–826 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. N. Vabishchevich, “A substructuring domain decomposition scheme for unsteady problems,” Comput. Methods Appl. Math. 11 (2), 241–268 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Dryja, “Substructuring methods for parabolic problems,” Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (SIAM, Philadelphia, 1991), pp. 264–271.

    Google Scholar 

  17. Yu. M. Laevsky, “Domain decomposition methods for the solution of two-dimensional parabolic equations,” Variational-Difference Methods in Problems of Numerical Analysis (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1987), pp. 112–128.

    Google Scholar 

  18. A. A. Samarskii and P. N. Vabishchevich, “Vector additive domain decomposition schemes for parabolic problems,” Differ. Uravn. 31 (9), 1563–1569 (1995).

    MathSciNet  Google Scholar 

  19. P. N. Vabishchevich, “Difference schemes with domain decomposition for solving time-dependent problems,” USSR Comput. Math. Math. Phys. 29 (6), 155–160 (1989).

    Article  MATH  Google Scholar 

  20. P. N. Vabishchevich, “Parallel domain decomposition algorithms for time-dependent problems of mathematical physics,” Advances in Numerical Methods and Applications (World Scientific, Singapore, 1994), pp. 293–299.

    Google Scholar 

  21. P. N. Vabishchevich, “Regionally additive difference schemes with a stabilizing correction for parabolic problems,” Comput. Math. Math. Phys. 34 (12), 1573–1581 (1994).

    MathSciNet  MATH  Google Scholar 

  22. P. N. Vabishchevich, “Domain decomposition methods with overlapping subdomains for the time-dependent problems of mathematical physics,” Comput. Methods Appl. Math. 8 (4), 393–405 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  24. G. I. Marchuk, “Splitting and alternating direction methods,” Handbook of Numerical Analysis (North-Holland, Amsterdam, 1990), Vol. 1, pp. 197–462.

    MathSciNet  MATH  Google Scholar 

  25. P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (de Gruyter, Berlin, 2014).

    MATH  Google Scholar 

  26. V. N. Abrashin, “One version of the alternative direction method for solving multidimensional problems in mathematical physics I,” Differ. Uravn. 26 (2), 314–323 (1990).

    MATH  Google Scholar 

  27. P. N. Vabishchevich, “Vector additive difference schemes for first-order evolution equations,” Comput. Math. Math. Phys. 36 (3), 317–322 (1996).

    MathSciNet  MATH  Google Scholar 

  28. V. N. Abrashin and P. N. Vabishchevich, “Vector additive schemes for second-order evolution equations,” Differ. Uravn. 34 (12), 1666–1674 (1998).

    MathSciNet  MATH  Google Scholar 

  29. A. A. Samarskii, “Regularization of difference schemes,” USSR Comput. Math. Math. Phys. 7 (1), 79–120 (1967).

    Article  MathSciNet  Google Scholar 

  30. P. N. Vabishchevich, “Domain decomposition schemes for the Stokes equation,” Publ. Inst. Math. 91 (105), 155–162 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  31. T. P. Mathew, P. L. Polyakov, G. Russo, and J. Wang, “Domain decomposition operator splittings for the solution of parabolic equations,” SIAM J. Sci. Comput. 19 (3), 912–932 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003).

    Book  MATH  Google Scholar 

  33. K. W. Morton and R. B. Kellogg, Numerical Solution of Convection–Diffusion Problems (Chapman and Hall, London, 1996).

    Google Scholar 

  34. A. A. Samarskii and P. N. Vabishchevich, Numerical Solution for Convection–Diffusion Problems (URSS, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  35. P. N. Vabishchevich, “Domain decomposition difference schemes for time-dependent convection/diffusion problems,” Differ. Uravn. 32 (7), 923–927 (1996).

    MathSciNet  Google Scholar 

  36. P. Vabishchevich and P. Zakharov, “Domain decomposition scheme for first-order evolution equations with non-self-adjoint operators,” Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications (Springer, New York, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vabishchevich.

Additional information

Original Russian Text © P.N. Vabishchevich, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 9, pp. 1530–1547.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vabishchevich, P.N. Vector domain decomposition schemes for parabolic equations. Comput. Math. and Math. Phys. 57, 1511–1527 (2017). https://doi.org/10.1134/S0965542517090135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517090135

Keywords

Navigation