Skip to main content
Log in

Locally one-dimensional difference scheme for a fractional tracer transport equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A locally one-dimensional scheme for a fractional tracer transport equation of order is considered. An a priori estimate is obtained for the solution of the scheme, and its convergence is proved in the uniform metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Yu. Dinariev, “Flow in a fractured medium with fractal fracture geometry,” Fluid Dyn. 25 (5), 704–708.

  2. V. L. Kobelev, Ya. L. Kobelev, and E. P. Romanov, “Non-Debye relaxation and diffusion in fractal space,” Dokl. Phys. 43, 752–753 (1998).

    MathSciNet  MATH  Google Scholar 

  3. V. L. Kobelev, Ya. L. Kobelev, and E. P. Romanov, “Self-maintained processes in the case of nonlinear fractal diffusion,” Dokl. Phys. 44, 752–753 (1999).

    MATH  Google Scholar 

  4. A. Yu. Kochubei, “Fractional order diffusion,” Differ. Uravn. 26, 660–670 (1990).

    MATH  Google Scholar 

  5. V. Kh. Shogenov, S. K. Kumykova, and M. Kh. Shkhanukov-Lafishev, “Generalized transport equations and fractional derivatives,” Dop. Nats. Akad. Nauk Ukr., No. 12, 47–55 (1997).

    MathSciNet  MATH  Google Scholar 

  6. R. R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractional geometry,” Phys. Status Solidi B 133, 425–430 (1986).

    Article  Google Scholar 

  7. V. M. Goloviznin, V. P. Kisilev, I. A. Korotkii, and Yu. P. Yurkov, Preprint IBRAE-2002-01 (Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 2002).

    Google Scholar 

  8. V. M. Goloviznin, V. P. Kisilev, and I. A. Korotkii, Preprint IBRAE-2003-12 (Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 2003).

    Google Scholar 

  9. A. A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings,” Appl. Math. Comput. 219, 3938–3946 (2002).

    MathSciNet  MATH  Google Scholar 

  10. J. Bangti, R. Lazarov, J. Pasciak, and Z. Zhou, “Error analysis of a finite element method for the space-fractional parabolic equation,” Soc. Ind. Appl. Math. 52 (5), 2272–2294 (2014).

    MathSciNet  MATH  Google Scholar 

  11. J. Bangti, R. Lazarov, and Z. Zhou, “An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data,” IMA J. Numer. Anal. 36, 197–221 (2015).

    MathSciNet  MATH  Google Scholar 

  12. J. Bangti, R. Lazarov, J. Pasciak, and Z. Zhou, “A Petrov–Galerkin finite element method for fractional convection-diffusion equations,” IMA Soc. Ind. Appl. Math. 54 (1), 481–503 (2016).

    MathSciNet  MATH  Google Scholar 

  13. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    Book  MATH  Google Scholar 

  14. V. Kh. Shogenov, A. A. Akhubekov, and R. A. Akhubekov, “Fractional differentiation method in the theory of Brownian motion,” Izv. Vyssh. Uch. Zaved. Severo-Kavkaz. Reg., No. 1, 46–50 (2004).

    Google Scholar 

  15. A. K. Bazzaev and M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain,” Comput. Math. Math. Phys. 56 (1), 106–115 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. P. Mazin and S. M. Shmeter Clouds: Structure and Physics of Formation (Gidrometeoizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  17. V. A. Ashabokov and A. V. Shapovalov, Convective Clouds: Numerical Models and Results of Simulation under Natural Conditions and Artificial Forcing (Kabardino-Balkar. Nauchn. Tsentr Ross. Akad. Nauk, Nalchik, 2008) [in Russian].

    Google Scholar 

  18. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).

    MATH  Google Scholar 

  19. M. M. Lafisheva and M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional difference schemes for the fractional order diffusion equation,” Comput. Math. Math. Phys. 48 (10), 1875–1884 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. A. Samarskii and A. V. Gulin, Stability of Difference Schemes (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Beshtokova.

Additional information

Original Russian Text © B.A. Ashabokov, Z.V. Beshtokova, M.Kh. Shkhanukov-Lafishev, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 9, pp. 1517–1529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashabokov, B.A., Beshtokova, Z.V. & Shkhanukov-Lafishev, M.K. Locally one-dimensional difference scheme for a fractional tracer transport equation. Comput. Math. and Math. Phys. 57, 1498–1510 (2017). https://doi.org/10.1134/S0965542517090044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517090044

Keywords

Navigation