Skip to main content
Log in

Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The use of eddy-resolving approaches to solving problems on arbitrary unstructured grids is investigated. The applications of such approaches requires the use of low dissipation numerical schemes, which can lead to numerical oscillations of the solution on unstructured grids. Numerical oscillations typically occur in domains with large gradients of velocities, in particular, in the near-wall layer. It is proposed to single out the boundary layer and use a numerical scheme with increased numerical dissipation in it. The algorithm for singling out the boundary layer uses a switching function to change the parameters of the numerical scheme. This algorithm is formulated based on the BCD scheme from the family NVD. Its validity and advantages are investigated using the zonal RANS–LES approach for solving some problems of turbulent flow of incompressible fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Volkov and V. N. Emel’yanov, Simulation of Large-Scale Eddies in the Computation of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  2. A. Yu. Snegirev, High-Performance Computations in Physics: Numerical Simulation of Turbulent Flows (Plitekhnicheskii Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  3. A. Travin, M. Shur, M. Strelets, and P. R. Spalart, “Detached-eddy simulations past a circular cylinder,” Flow. Turb. Comb. 63, 293–313 (2000).

    Article  MATH  Google Scholar 

  4. N. Jarrin, R. Prosser, J. Uribe, et al. “Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method,” Int. J. Heat Fluid Flow 30, 435–442 (2009).

    Article  Google Scholar 

  5. D. Yu. Adamiyan, “An efficient method of synthetic turbulence generation at LES inflow in zonal RANS–LES approaches to computation of turbulent flows,” Mat. Model. 23 (7), 3–19 (2011).

    MathSciNet  Google Scholar 

  6. A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, O. L. Puchkova, and S. V. Lashkin, “Investigation of schemes for the discretization of the convective flow of viscous incompressible fluid by the detached eddy method,” Fund. Res., No. 10, 13 (2013).

    Google Scholar 

  7. A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, and O. L. Puchkova, “Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids,” Mat. Model. 26 (8), 81–96 (2014).

    MATH  Google Scholar 

  8. H. Jasak, H. G. Weller, and A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes,” Int. J. Numer. Meth. Fluids 31, 431–449 (1999).

    Article  MATH  Google Scholar 

  9. H. Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows,” Thesis submitted for the degree of doctor, Department of Mech. Eng. Imperial College of Sci. 1996.

    Google Scholar 

  10. B. P. Leonard, “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection,” Comput. Meth. Appl. Mech. Eng. 88, 17–74 (1991).

    Article  MATH  Google Scholar 

  11. A. S. Kozelkov and V. V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows,” Comput. Math. Math. Phys. 55, 135–146 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. S. Kozelkov, R. N. Zhuchkov, A. A. Utkina, and K. B. Volodchenkova, “Simulation of turbulent flows on hybrid grids using high-order schemes,” Vopr. Atomn. Nauki Tekh. (VANT), Ser. Math. Mat. Model. Fiz. Proc., No. 3, 18–31 (2014).

    Google Scholar 

  13. M. Strelets, “Detached eddy simulation of massively separated flows,” AIAA Paper 2001-087939, 39th Aerospace Sci. Meeting and Exhibition, Reno, NV, 2001.

    Book  Google Scholar 

  14. H. Schlichting, Boundary Layer Theory, 6th ed. (McGraw-Hill, New York, 1968; Nauka, Moscow, 1974).

    MATH  Google Scholar 

  15. K. N. Volkov and V. N. Emel’yanov, Flows and Heat Exchange in Channels and Rotating Cavities (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  16. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods for Speeding Up Fluid Dynamics Computations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  17. A. S. Kozelkov, Yu. N. Deryugin, S. V. Lakshin, D. P. Silaev, P.G. Simonov, and E. S. Tyatyushkina, “Implementation of the method for the calculation of a viscous incompressible fluid using the multigrid method based on the SIMPLE algorithm in the LOGOS software package,” Vopr. Atomn. Nauki Tekh. (VANT), Ser. Math. Mat. Model. Fiz. Proc., No. 4, 44–56 (2013).

    Google Scholar 

  18. V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Yu. N. Deryuguin, D. A. Korchazhkin, A. S. Kozelkov, V. F. Nikitin, A. V. Sarazov, and D. K. Zelenskiy, “Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code,” Acta Astronaut. 96, 53–64 (2014).

    Article  Google Scholar 

  19. A. S. Kozelkov, V. V. Kurulin, O. L. Puchkova, and S. V. Lashkin, “Simulation of turbulent flows using the algebraic Reynolds stress model with universal near-wall functions,” Vychisl. Mekh. Sploshnykh Sred 7 (1), 40–51 (2014).

    Google Scholar 

  20. E. M. Cherry, C. J. Elkins, and J. K. Eaton, “Geometric sensitivity of 3-D separated flows,” in Proc. of the 5th Int. Symp. on Turbulence and Shear Flow Phenomena, TSFP5, Munich, 2007, pp. 27–29.

    Google Scholar 

  21. F. R. Menter, A. V. Garbaruk, and Y. Egorov, “Explicit algebraic Reynolds stress models for anisotropic wallbounded flows,” in Proc. of the 3rd. Europ. Conf. on Aero-Space Sci. (EUCASS), Versailles, 2009.

    Google Scholar 

  22. N. Fukushima, K. Fukagata, N. Kasagi, H. Noguchi, and K. Tanimoto, “Numerical and experimental study on turbulent thermal mixing in a T-junction flow,” in Proc. of the 6th ASME-JSME Thermal Eng. Joint Conf., 2003.

    Google Scholar 

  23. A. S. Kozelkov etc., Mathematical Models and Algorithms for the Numerical Simulation of Fluid Dynamics Problems (Nizhegorodskii Gos. Tekhn. Univ., Nizhnii Novgorod, 2014) [in Russian].

    Google Scholar 

  24. A. S. Kozelkov etc., “The minimal set of benchmarks for the validation of methods for the numerical simulation of turbulent flows of viscous incompressible fluid,” Trudy Nizhegor. Gos. Tekhn. Univ., No. 4 (104), 21–69 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kozelkov.

Additional information

Original Russian Text © A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, S.V. Lashkin, E.S. Tyatyushkina, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 6, pp. 1048–1060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozelkov, A.S., Krutyakova, O.L., Kurulin, V.V. et al. Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids. Comput. Math. and Math. Phys. 57, 1036–1047 (2017). https://doi.org/10.1134/S0965542517060070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517060070

Keywords

Navigation