Skip to main content
Log in

Inverse final observation problems for Maxwell’s equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An initial–boundary value problem for Maxwell’s equations in the quasi-stationary magnetic approximation is investigated. Special gauge conditions are presented that make it possible to state the problem of independently determining the vector magnetic potential. The well-posedness of the problem is proved under general conditions on the coefficients. For quasi-stationary Maxwell equations, final observation problems formulated in terms of the vector magnetic potential are considered. They are treated as convex programming problems in a Hilbert space with an operator equality constraint. Stable sequential Lagrange principles are stated in the form of theorems on the existence of a minimizing approximate solution of the optimization problems under consideration. The possibility of applying algorithms of dual regularization and iterative dual regularization with a stopping rule is justified in the case of a finite observation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    MATH  Google Scholar 

  2. J.-L. Coulomb and J.-K. Sabonnadiere, CAO en electrotechnique (Hermes, Paris, 1985; Mir, Moscow, 1988).

    Google Scholar 

  3. A. Alonso Rodriguez and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms, and Applications (Springer-Verlag, Milan, Italia, 2010).

    Book  MATH  Google Scholar 

  4. M. P. Galanin and Yu. P. Popov, Quasi-stationary Electromagnetic Fields in Inhomogeneous Media (Fizmatlit, Moscow, 1995) [in Russian].

    MATH  Google Scholar 

  5. V. I. Dmitriev, A. S. Il’inskii, and A. G. Sveshnikov, “The developments of mathematical methods for the study of direct and inverse problems in electrodynamics,” Russ. Math. Surv. 31 (6), 133–152 (1976).

    Article  MATH  Google Scholar 

  6. V. G. Romanov, S. I. Kabanikhin, and T. P. Pukhnacheva, Inverse Problems in Electrodynamics (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1984) [in Russian].

    MATH  Google Scholar 

  7. V. G. Romanov and S. I. Kabanikhin, Inverse Problems in Geoelectrics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  8. P. Ola, L. Paivarinta, and E. Somersalo, “An inverse boundary value problem in electrodynamics,” Duke Math. J. 70, 617–653 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Li and M. Yamamoto, “An inverse problem for Maxwell’s equations in anisotropic media,” Chin. Ann. Math. B 28 (1), 35–54 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Alonso Rodriguez, J. Camano, and A. Valli, “Inverse source problems for eddy current equations,” Inverse Probl. 28 (1), 015006-1–015006-15 (2012).

    Google Scholar 

  11. Y. Shestopalov and Y. Smirnov, “Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide,” Inverse Probl. 26 (10), 1–14 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. V. Alekseev and R. V. Brizitskii, “Theoretical analysis of boundary control extremal problems for Maxwell’s equations,” J. Appl. Ind. Math. 5, 478–490 (2011).

    Article  MathSciNet  Google Scholar 

  13. P. Fernandes, “General approach to prove the existence and uniqueness of the solution in vector potential formulations of 3-D eddy current problems,” IEE Proc.-Sci. Meas. Technol. 142, 299–306 (1995).

    Article  Google Scholar 

  14. O. Biro and A. Valli, “The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: Well-posedness and numerical approximation,” Comput. Meth. Appl. Mech. Eng. 196, 890–904 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Fernandes and A. Valli, “Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with L8-regularity of material properties,” Math. Methods Appl. Sci. 31, 71–98 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kang and K. I. Kim, “Fully discrete potential-based finite element methods for a transient eddy current problem,” Computing 85, 339–362 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Camano and R. Rodriguez, “Analysis of a FEM-BEM model posed on the conducting domain for the timedependent eddy current problem,” J. Comput. Appl. Math. 236, 3084–3100 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979; Mir, Moscow, 1981).

    MATH  Google Scholar 

  19. V. Girault and P. Raviart, Finite Element Methods for Navier–Stokes Equations (Springer-Verlag, New York, 1986).

    Book  MATH  Google Scholar 

  20. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (Marcel Dekker, New York, 2000).

    MATH  Google Scholar 

  21. A. Prilepko, S. Piskarev, and S.-Y. Shaw, “On approximation of inverse problem for abstract parabolic differential equations in Banach spaces,” J. Inverse Ill-Posed Probl. 15 (8), 831–851 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 2006).

    MATH  Google Scholar 

  23. V. I. Agoshkov and E. A. Botvinovskii, “Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory,” Comput. Math. Math. Phys. 47 (7), 1142–1157 (2007).

    Article  MathSciNet  Google Scholar 

  24. G. V. Alekseev, Optimization in Stationary Problems of Heat and Mass Transfer and Magnetic Hydrodynamics (Nauchnyi Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  25. M. I. Sumin, “A regularized gradient dual method for solving inverse problem of final observation for a parabolic equation,” Comput. Math. Math. Phys. 44 (11), 1903–1921 (2004).

    MathSciNet  MATH  Google Scholar 

  26. A. V. Kalinin and A. A. Kalinkina, “Quasi-stationary initial–boundary value problems for Maxwell’s equations,” Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr. 26 (1), 21–38 (2003).

    MATH  Google Scholar 

  27. M. I. Ivanov, I. A. Kremer, and M. V. Urev, “Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium,” Comput. Math. Math. Phys. 52 (3), 476–488 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space,” Comput. Math. Math. Phys. 51 (9), 1489–1509 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. I. Sumin, “On the stable sequential Kuhn–Tucker theorem and its applications,” Appl. Math. A 3 (10), special issue “Optimization,” 1334–1350 (2012).

    Google Scholar 

  30. M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems,” Comput. Math. Math. Phys. 54 (1), 22–44 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  31. F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011) [in Russian].

    Google Scholar 

  32. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  33. M. I. Sumin, “Duality-based regularization in a linear convex mathematical programming problem,” Comput. Math. Math. Phys. 47 (4), 579–600 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. I. Sumin, Ill-Posed Problems and Solution Methods (Nizhegorod. Gos. Univ., Nizhny Novgorod, 2009) [in Russian].

    Google Scholar 

  35. K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Nonlinear Programming (Stanford Univ. Press, Stanford, 1958; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  36. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  37. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974; Mir, Moscow, 1978).

    MATH  Google Scholar 

  38. C. Weber, “A local compactness theorem for Maxwell’s equations,” Math. Methods Appl. Sci. 2, 12–25 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. I. Sumin, “Suboptimal control of distributed-parameter systems: Minimizing sequences and the value function,” Comput. Math. Math. Phys. 37 (1), 21–39 (1997).

    MathSciNet  MATH  Google Scholar 

  40. J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  41. A. V. Kalinin and A. A. Tyukhtina, “On the uniqueness of the solution to a retrospective inverse problem for Maxwell’s equations in the quasi-stationary magnetic approximation,” Vestn. Nizhegorod. Gos. Univ., No. 4, 263–270 (2014).

    Google Scholar 

  42. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Pergamon, Oxford, 1982; Nevskii Dialekt, St. Petersburg, 2004).

    MATH  Google Scholar 

  43. P. D. Loewen, Optimal Control via Nonsmooth Analysis (Am. Math. Soc., Providence, R.I., 1993).

    MATH  Google Scholar 

  44. A. B. Bakushinskii and A. V. Goncharskii, Iterative Methods for Ill-Posed Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalinin.

Additional information

Original Russian Text © A.V. Kalinin, M.I. Sumin, A.A. Tyukhtina, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 2, pp. 187–209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, A.V., Sumin, M.I. & Tyukhtina, A.A. Inverse final observation problems for Maxwell’s equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving. Comput. Math. and Math. Phys. 57, 189–210 (2017). https://doi.org/10.1134/S0965542517020075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517020075

Keywords

Navigation