Skip to main content

Solving boundary value problems of mathematical physics using radial basis function networks

Abstract

A neural network method for solving boundary value problems of mathematical physics is developed. In particular, based on the trust region method, a method for learning radial basis function networks is proposed that significantly reduces the time needed for tuning their parameters. A method for solving coefficient inverse problems that does not require the construction and solution of adjoint problems is proposed.

This is a preview of subscription content, access via your institution.

References

  1. M. P. Galanin and E. B. Savenkov, Numerical Analysis of Mathematical Models (Bauman Mosk. Gos. Tekhn. Univ., 2010, Moscow) [in Russian].

    MATH  Google Scholar 

  2. A. I. Tolstykh and D. A. Shirobokov, “Meshless method based on radial basis functions,” Comput. Math. Math. Phys. 45, 1447–1456 (2005).

    MathSciNet  MATH  Google Scholar 

  3. E. J. Kansa, Motivation for using radial basis function to solve PDEs. http://www.cityu.edu.hk/rbfpde/ files/overview-pdf.pdf

  4. G. R. Liu, Mesh Free Methods: Moving beyond the Finite Element Method (CRC, 2003).

    MATH  Google Scholar 

  5. A. N. Vasil’ev and D. A. Tarkhov, Principles and Techniques of Neural Network Modeling (Nestor-Istoriya, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  6. E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluiddynamics. I. Surface approximations and partial derivatives,” Comput. Math. Appl. 19 (8), 127–145 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. C. S. Chen and M. A. Golberg, “The method of fundamental solutions for potential, Helmholtz and diffusion problems,” Boundary Integral Meth. Numer. Math. Aspects 1, 103–176 (1998).

    MathSciNet  MATH  Google Scholar 

  8. G. E. Fasshauer, “Solving differential equations with radial basis functions: Multilevel methods and smoothing,” Adv. Comput. Math. 11 (2), 139–159 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. M. Wu, “Hermite–Birkhoff interpolation of scattered data by radial basis functions, Approx. Theory Appl. 8 (2), 1–10 (1992).

    MathSciNet  MATH  Google Scholar 

  10. R. L. Hardy, “Multiquadric equations of topography and other irregular surfaces,” J. Geophys. Res. 76, 1905–1915 (1971).

    Article  Google Scholar 

  11. R. Franke, “Scattered data interpolation: Tests of some methods,” Math. Comput. 38, 181–200 (1982).

    MathSciNet  MATH  Google Scholar 

  12. E. A. Galperin and Q. Zheng, “Solution and control of PDE via global optimization methods,” Comput. Math. Appl. 25 (10–11), 103–118 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Rippa, “An algorithm for selecting a good value for the parameter c in radial basis function interpolation,” Adv. Comput. Math., 11 (2), 193–210 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Mai-Duy and T. Tran-Cong, “Numerical solution of differential equations using multiquadric radial basis function networks,” Neural Networks 14 (2), 185–199 (2001).

    Article  MATH  Google Scholar 

  15. A. N. Vasil’ev, “Neural networks as a new universal approach to the numerical solution of mathematical physics problems,” Neurocomput.: Development Appl., No. 7–8, 111–118 (2004).

    Google Scholar 

  16. E. V. Artyukhina and V. I. Gorbachenko, “Meshless methods and their implementation on radial basis neural networks,” Neurocomput.: Development, Appl., No. 11, 4–10 (2010).

    Google Scholar 

  17. N. Yadav, M. Yadav, and M. Kumar, An Introduction to Neural Network Methods for Differential Equations (Springer, 2015).

    Book  MATH  Google Scholar 

  18. A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods (MPS-SIAM, 1987).

    MATH  Google Scholar 

  19. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, Upper Saddle River, N.J., 1999; Vil’yams, Moscow, 2006).

    MATH  Google Scholar 

  20. P. Niyogi and F. Girosi, “On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions,” Neural Comput. 8, 819–842 (1996).

    Article  Google Scholar 

  21. L. Jianyu, L. Siwei, Q, Yingjian, and H. Yaping, “Numerical solution of elliptic partial differential equation using radial basis function neural networks,” Neural Networks 16, 729–734 (2003).

    Article  Google Scholar 

  22. V. I. Gorbachenko and E. V. Artyukhina, “Meshless neural network algorithms for modeling physical fields in inhomogeneous and nonlinear media,” Izv. Penza Gos. Pedagogical Univ., No. 18 (22), 130–136 (2010).

    Google Scholar 

  23. Z. Li and X.-Z Mao, “Least-square-based radial basis collocation method for solving inverse problems of Laplace equation from noisy data,” Int. J. Numer. Meth. Eng. 84, 1–26 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. S. Chen and H. Y. Hu, “Radial basis collocation method and quasi-Newton iteration for nonlinear elliptic problems,” Numer. Meth. Partial Diff. Equations 24, 991–1017 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems (American Elsevier, New York, 1965; Mir, Moscow, 1968).

    MATH  Google Scholar 

  26. T. Staihaug, “The conjugate gradient method and trust region in large scale optimization,” SIAM J. Numer. Anal. 20, 626–637 (1983).

    Article  MathSciNet  Google Scholar 

  27. M. A. Dehghan and A. Shokri, “Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions,” J. Comput. Appl. Math. 230, 400–410 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. I. Gorbachenko and M. V. Zhukov, “Solution of nonlinear time-dependent problems of mathematical physics using radial basis function networks,” in The 21st All-Russia Seminar on Neuroinformatics, Its Applications, and Data Analysis (Inst. Prikladnogo Modelirovaniya, Sibirskoe Otdelenie Ross. Akad. Nauk, Krasnoyarsk, 2013), pp. 71–75.

    Google Scholar 

  29. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Academic, 2012).

    MATH  Google Scholar 

  30. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (LKI, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

  31. M. V. Zhukov, “The use of radial basis function networks for solving evolutionary inverse problems of mathematical physics,” in Proceedings of the 13th International Conference on Problems of Information Science in Education, Management, Economic, and Engineering, Penza, 2013 (Privolzhskii dom znanii, Penza, 2013), pp. 12–14.

    Google Scholar 

  32. V. A. Morozov, Regular Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  33. O. M. Alifanov, Inverse Problems of Heat Transfer (Mashinostroenie, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Gorbachenko.

Additional information

Original Russian Text © V.I. Gorbachenko, M.V. Zhukov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 1, pp. 133–143.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachenko, V.I., Zhukov, M.V. Solving boundary value problems of mathematical physics using radial basis function networks. Comput. Math. and Math. Phys. 57, 145–155 (2017). https://doi.org/10.1134/S0965542517010079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517010079

Keywords