## Abstract

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes *N* is fixed. A modified cubic interpolation spline is proposed, for which *O*((ln *N/N*)^{4}) error estimates that are uniform with respect to the small parameter are obtained.

This is a preview of subscription content, access via your institution.

## References

A. M. Il’in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative,” Math. Notes

**6**(2), 596–602 (1969).N. S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer,” USSR Comput. Math. Math. Phys.

**9**(4), 139–166 (1969).G. I. Shishkin,

*Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations*(Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].J. H. Ahlberg, E. N. Nilson, and J. L. Walsh,

*The Theory of Splines and Their Applications*(Academic, New York, 1967).Yu. S. Zav’yalov, B. N. Kvasov, and V. L. Miroshnichenko,

*Methods of Spline Functions*(Nauka, Moscow, 1981) [in Russian].A. I. Zadorin, “Method of interpolation for a boundary layer problem,” Sib. Zh. Vychisl. Mat.

**10**(3), 267–275 (2007).A. I. Zadorin and M. V. Guryanova, “Analogue of a cubic spline for a function with a boundary layer component,”

*Proceedings of the Fifth Conference on Finite Difference Methods: Theory and Applications*(Rousse Univ, Rousse, 2011), pp. 166–173.A. I. Zadorin, “Lagrange interpolation and Newton–Cotes formulas for functions with a boundary layer component on piecewise uniform meshes,” Numer. Anal. Appl.

**8**(3), 235–247 (2015).N. L. Zmatrakov, “Convergence of an interpolation process for parabolic and cubic splines,” Proc. Steklov Inst. Math.

**138**, 75–99 (1977).N. L. Zmatrakov, “A necessary condition for convergence of interpolating parabolic and cubic splines,” Math. Notes

**19**(2), 100–107 (1976).J. J. H. Miller, E. O’Riordan, and G. I. Shishkin,

*Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions*(revised ed.) (World Scientific, Singapore, 2012).T. Linss, “The necessity of Shishkin decompositions,” Appl. Math. Lett.

**14**, 891–896 (2001).C. de Boor,

*Practical Guide to Splines*(Springer-Verlag, New York, 1978; Radio i Svyaz’, Moscow, 1985).S. Demko, “Inverses of band matrices and local convergence of spline projections,” SIAM J. Numer. Anal.

**14**(4), 616–619 (1977).V. V. Voevodin and Yu. A. Kuznetsov,

*Matrices and Computations*(Nauka, Moscow, 1984) [in Russian].A. A. Samarskii and E. S. Nikolaev,

*Numerical Methods for Grid Equations*(Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).I. A. Blatov, “Incomplete factorization methods for systems with sparse matrices,” Comput. Math. Math. Phys.

**33**(6), 727–741 (1993).Yu. S. Volkov, “On finding a complete interpolation spline via B-splines,” Sib. Elektron. Mat. Izv.

**5**, 334–338 (2008).I. A. Blatov and E. V. Kitaeva, “Convergence of a Bakhvalov grid adaptation method for singularly perturbed boundary value problems,” Numer. Anal. Appl.

**9**(1), 34–44 (2016).

## Author information

### Authors and Affiliations

### Corresponding authors

## Additional information

Original Russian Text © I.A. Blatov, A.I. Zadorin, E.V. Kitaeva, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 1, pp. 9–28.

## Rights and permissions

## About this article

### Cite this article

Blatov, I.A., Zadorin, A.I. & Kitaeva, E.V. Cubic spline interpolation of functions with high gradients in boundary layers.
*Comput. Math. and Math. Phys.* **57**, 7–25 (2017). https://doi.org/10.1134/S0965542517010043

Received:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1134/S0965542517010043

### Keywords

- singular perturbation
- boundary layer
- Shishkin mesh
- cubic spline
- modification
- error estimate