Skip to main content
Log in

On the stability of reverse flow vortices

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The nonlinear stability of vortex zones of reverse flows in a plane-parallel ideal incompressible flow is proved. The zones originate at large values of a dimensionless parameter taken in the inflow part of the boundary, the so-called vorticity level. Positive or negative values of this parameter lead to a left- or right-hand oriented vortex, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Troshkin, “Algebraic structure of the two-dimensional stationary Navier–Stokes equations and nonlocal uniqueness theorems,” Dokl. Akad. Nauk SSSR 298 (6), 1372–1376 (1988).

    MathSciNet  Google Scholar 

  2. O. V. Troshkin, Nontraditional Methods in Mathematical Hydrodynamics (Am. Math. Soc., Providence,1995) (Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990)).

    MATH  Google Scholar 

  3. M. A. Lavren’tev and B. V. Shabat, Methods of the Theory of Functions of Complex Variable (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  4. A. A. Dezin, On a Class of Vector Fields: Collected Papers on Complex Analysis and Its Applications (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  5. V. I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique de fluids parfaits,” Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966).

    Article  Google Scholar 

  6. O. V. Troshkin, “Topological analysis of the structure of hydrodynamic flows,” Russ. Math. Surv. 43 (4), 153–190 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. M. Landis, Second-Order Elliptic and Parabolic Equations (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  8. A. M. Lyapunov, The General Problem of the Stability of Motion (Gostekhizdat, Moscow, 1950; Taylor and Francis, London, 1992).

    MATH  Google Scholar 

  9. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969; Nauka, Moscow, 1970).

    MATH  Google Scholar 

  10. L. M. Milne-Thomson, Theoretical Hydrodynamics (Macmillan, London, 1960; Mir, Moscow, 1964).

    MATH  Google Scholar 

  11. A. A. Dezin, “Invariant forms and some structural properties of the Euler fluid dynamic equations,” Z. Anal. Anwendungen 2, 401–409 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. V. Troshkin, “A two-dimensional flow problem for steady-state Euler equations,” Math. USSR Sb. 66, 363–382 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  14. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,” Commun. Pure Appl. Math. 12 (4), 623–727 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Yudovich, “Two-dimensional unsteady problem of inviscid incompressible flow through a given region,” Mat. Sb. 64, 562–588 (1964).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Troshkin.

Additional information

Original Russian Text © O.V. Troshkin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 12, pp. 2092–2097.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshkin, O.V. On the stability of reverse flow vortices. Comput. Math. and Math. Phys. 56, 2062–2067 (2016). https://doi.org/10.1134/S0965542516120149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516120149

Keywords

Navigation