Skip to main content
Log in

Asymptotic analysis of the model of gyromagnetic autoresonance

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The system of ordinary differential equations that in a specific case describes the cyclotron motion of a charged particle in an electromagnetic wave is considered. The capture of the particle into autoresonance when its energy undergoes a significant change is studied. The main result is a description of the capture domain, which is the set of initial points in the phase plane where the resonance trajectories start. This description is obtained in the asymptotic approximation with respect to the small parameter that in this problem corresponds to the amplitude of the electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Milant’ev, “The cyclotron autoresonance (to the 50th anniversary of the phenomenon discovery),” Usp. Fiz. Nauk 180, 875–884 (2013).

    Article  Google Scholar 

  2. L. A. Kalyakin, “Asymptotic analysis of self-resonance models,” Usp. Mat. Nauk 63 (5), 3–72 (2008).

    Article  Google Scholar 

  3. K. S. Golovanivsky, “The gyromagnetic autoresonance,” IEEE Trans. Plasma Sci. PS- 11 (1), 28–35 (1983).

    Article  Google Scholar 

  4. L. A. Kalyakin, “Asymptotic analysis of the model of the cyclotron gyromagnetic autoresonance,” Vestn. Chelyab. Gos. Univ., Ser. Fizika, No. 21, 68–74 (2015).

    Google Scholar 

  5. V. P. Milant’ev, “The cyclotron autoresonance phenomenon and its applications,” Usp. Fiz. Nauk 167, 3–16 (1997).

    Article  Google Scholar 

  6. K. S. Golovanivsky, “Autoresonant acceleration of electrons at nonlinear ECR in a magnetic field which is smoothly growing in time,” Physica Scripta 22, 126–133 (1980).

    Article  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  8. C. S. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field,” Phys. Rev. A 135, 381–389 (1964).

    Article  MathSciNet  Google Scholar 

  9. A. A. Kolomenskii and A. N. Lebedev, “Resonance phenomena in the motion of particles in a plane electromagnetic wave,” Zh. Eksp. Teor. Fiz 44, 261–269 (1963).

    Google Scholar 

  10. V. Ya. Davydovskii, “On the resonance acceleration of charged particles by electromagnetic waves in a constant magnetic field,” Zh. Eksp. Teor. Fiz 43, 886–888 (1962).

    Google Scholar 

  11. V. I. Veksler, “A new method for the acceleration of relativistic particles,” Dokl. Akad. Nauk SSSR 43, 346–348 (1944).

    Google Scholar 

  12. V. I. Veksler, “On a new method for the acceleration of particles,” Dokl. Akad. Nauk SSSR 44, 393–396 (1944).

    Google Scholar 

  13. V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of the Classical and Celestial Mechanics (VINITI, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  14. A. I. Neishtadt, “Crossing the separatrix in the resonance problem with a slowly varying parameter,” Prikl. Mat. Mekh. 39, 621–632 (1975).

    Google Scholar 

  15. O. M. Kiselev, “Oscillations near the separatrix in the Duffing equation,” Trudy Inst. Mat. Mek. Ural. Otd. Ross. Akad. Nauk. 18 (2), 141–153 (2012).

    Google Scholar 

  16. B. V. Chirikov, “Passage of a nonlinear oscillating system through the resonance,” Dokl. Akad. Nauk SSSR 125, 1015–1018 (1959).

    MathSciNet  MATH  Google Scholar 

  17. G. M. Zaslavsky and R. Z. Sagdeev, Nonlinear Physics: From the Pendulum to Turbulence and Chaos (Nauka, Moscow, 1977; Harwood, New York, 1988).

    Google Scholar 

  18. A. I. Neishtadt and A. V. Timofeev, “Autoresonance in electron cyclotron heating of a plasma,” Zh. Eksp. Teor. Fiz. 93, 1706–1713 (1987).

    Google Scholar 

  19. L. Friedland, “Spatial autoresonance cyclotron accelerator,” Phys. Plasmas 1, 421–428 (1994).

    Article  Google Scholar 

  20. A. P. Itin, A. I. Neishtadt, and A. A. Vasiliev, “Capture into resonance in dynamics of a charged partice in magnetic field and electrostatic wave,” Phys. D 141, 281–296 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Fajans and L. Friedland, “Autoresonant (non stationary) excitation of a pendulum, plutinos, plasmas and other nonlinear oscillators,” Am. J. Phys. 69, 1096–1102 (2001).

    Article  Google Scholar 

  22. R. N. Garifullin, “An analysis of the growth of solutions to a nonlinear equation depending on the initial data,” in Collected Papers of School–Conference on Mathematics and Physics for Students, Graduate Students, and Young Scientists, Vol. 1: Mathematics (Ufa, 2003), pp. 189–195.

    Google Scholar 

  23. R. N. Garifullin, L. A. Kalyakin, and M. A. Shamsutdinov, “Autoresonance excitation of a breather in weak ferromagnetics,” Comput. Math. Math. Phys. 47, 1158–1170 (2007).

    Article  MathSciNet  Google Scholar 

  24. L. A. Kalyakin, “Averaging in the autoresonance model,” Mat. Zametki 73, 449–452 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. N. Garifullin, “Asymptotic solution to the problem of autoresonance: Outer expansion,” Comput. Math. Math. Phys. 46, 1526–1538 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kalyakin.

Additional information

Original Russian Text © L.A. Kalyakin, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 2, pp. 285–301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakin, L.A. Asymptotic analysis of the model of gyromagnetic autoresonance. Comput. Math. and Math. Phys. 57, 281–296 (2017). https://doi.org/10.1134/S0965542516120113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516120113

Keywords

Navigation