Skip to main content
Log in

Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The solvability of the boundary value and extremum problems for the convection–diffusion–reaction equation in which the reaction coefficient depends nonlinearly on the concentration of substances is proven. The role of the control in the extremum problem is played by the boundary function in the Dirichlet condition. For a particular reaction coefficient in the extremum problem, the optimality system and estimates of the local stability of its solution to small perturbations of the quality functional and one of specified functions is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  2. G. I. Marchuk, Mathematical Models in Environmental Problems (Nauka, Moscow, 1982; Elsevier, New York, 1986).

    MATH  Google Scholar 

  3. O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems (Nauka, Moscow, 1988; Begell House, New York, 1995).

    MATH  Google Scholar 

  4. K. Ito and K. Kunish, “Estimation of the convection coefficient in elliptic equations,” Inverse Probl. 14, 995–1013 (1997).

    Article  MathSciNet  Google Scholar 

  5. V. I. Agoshkov, F. P. Minuk, A. S. Rusakov, and V. B. Zalesny, “Study and solution of identification problems for nonstationary 2D- and 3D-convection–diffusion–reaction,” Russ. J. Numer. Anal. Math. Model. 20, 19–43 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. V. Alekseev and E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid,” J. Inverse Ill-Posed Probl. 9, 435–468 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. A. Nguyen and J.-P. Raymond, “Control problems for convection-diffusion equations with control localized on manifolds,” ESAIM Control Optim. Calc. Var. 6, 467–488 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory,” Comput. Math. Math. Phys. 42 (3), 363–376 (2002).

    MathSciNet  MATH  Google Scholar 

  9. G. V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations,” Comput. Math. Math. Phys. 47 (6), 1007–1028 (2007).

    Article  Google Scholar 

  10. G. V. Alekseev, O. V. Soboleva, and D. A. Tereshko, “Identification problems for a steady-state model of mass transfer,” J. Appl. Mech. Tech. Phys. 49 (4), 537–547 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. V. Alekseev and D. A. Tereshko, Analysis and Optimization in Viscous Fluid Dynamics (Dal’nauka, Vladivostok, 2008) [in Russian].

    Google Scholar 

  12. G. V. Alekseev and D. A. Tereshko, “Two-parameter extremum problems of boundary control for stationary thermal convection equations,” Comput. Math. Math. Phys. 51 (9), 1539–1557 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. V. Alekseev, I. S. Vakhitov, and O. V. Soboleva, “Stability estimates in identification problems for the convection–diffusion–reaction equation,” Comput. Math. Math. Phys. 52 (12), 1635–1649 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. E. Kovtanyuk, A. Y. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive–convective–radiative heat transfer,” J. Math. Anal. Appl. 412 (1), 520–528 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Yu. Chebotarev, “Extremal boundary value problems of the dynamics of a viscous incompressible fluid,” Sib. Math. J. 34 (5), 972–983 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. V. Alekseev, “Control problems for stationary equations of magnetic hydrodynamics,” Dokl. Math. 69, 310–313 (2004).

    Google Scholar 

  17. V. V. Penenko, “Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment,” Numer. Anal. Appl. 2, 341–351 (2009).

    Article  MATH  Google Scholar 

  18. E. V. Dement’eva, E. D. Karepova, and V. V. Shaidurov, “Recovery of a boundary function from observation data for the surface wave propagation problem in an open basin,” Sib. Zh. Ind. Mat. 16 (1), 10–20 (2013).

    MathSciNet  MATH  Google Scholar 

  19. A. I. Korotkii and D. A. Kovtunov, “Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid,” Proc. Steklov Inst. Math. 255, suppl. 2, 81–92 (2006).

    Article  MathSciNet  Google Scholar 

  20. R. V. Brizitskii and Zh. Yu. Saritskaya, “Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation,” Sib. Elektron. Mat. Izv. 12, 447–456 (2015).

    MATH  Google Scholar 

  21. G. V. Alekseev, R. V. Brizitskii, and Zh. Yu. Saritskaya, “Stability estimates of solutions to extremal problems for nonlinear convection–diffusion–reaction equation,” J. Appl. Ind. Math. 10 (3), 155–167 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model,” Commun. Nonlinear Sci. Numer. Simul. 20, 776–784 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. E. Kovtanyuk and A. Yu. Chebotarev, “Steady-state problem of complex heat transfer,” Comput. Math. Math. Phys. 54 (4), 719–726 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. E. Kovtanyuk and A. Yu. Chebotarev, “Stationary free convection problem with radiative heat exchange,” Differ. Equations 50 (12), 1592–1599 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications (Nauchnaya Kniga, Novosibirsk, 1973; Am. Math. Soc., Providence, R.I., 2000).

    MATH  Google Scholar 

  26. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  27. A. Kufner and S. Fucik, Nonlinear Differential Equations (Elsevier, Amsterdam 1980; Nauka, Moscow, 1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Brizitskii.

Additional information

Original Russian Text © R.V. Brizitskii, Zh.Yu. Saritskaya, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 12, pp. 2042–2053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizitskii, R.V., Saritskaya, Z.Y. Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition. Comput. Math. and Math. Phys. 56, 2011–2022 (2016). https://doi.org/10.1134/S096554251612006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251612006X

Keywords

Navigation