Skip to main content
Log in

Convergence of a family of solutions to a Fujita-type equation in domains with cavities

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Dirichlet problem for a Fujita-type equation, i.e., a second-order quasilinear uniformly elliptic equation is considered in domains Ωε with spherical or cylindrical cavities of characteristic size ε. The form of the function in the condition on the cavities’ boundaries depends on ε. For ε tending to zero and the number of cavities increasing simultaneously, sufficient conditions are established for the convergence of the family of solutions {u ε(x)} of this problem to the solution u(х) of a similar problem in the domain Ω with no cavities with the same boundary conditions imposed on the common part of the boundaries ∂Ω and ∂Ωε. Convergence rate estimates are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Keller, “On solutions of Δu = f(u),” Commun. Pure Appl. Math. 10 (4), 503–510 (1957).

    Article  MATH  Google Scholar 

  2. R. Osserman, “On the inequality Δuf(u),” Pacific J. Math. 7 (4), 1641–1647 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. V. Pikulin, “On the convergence of solutions to a stationary Fujita-type equation in a domain with a spherical cavity,” Nauchn. Vedomosti Belgor. Gos. Univ. Mat. Fiz. 19 (32), 120–129 (2013).

    Google Scholar 

  4. E. Sánches-Palensiya, Nonhomogeneous Media and Vibration Theory (Springer-Verlag, New York, 1980; Mir, Moscow, 1984).

    Google Scholar 

  5. N. S. Bakhvalov and G. P. Panasenko, Homogenization: Averaging Processes in Periodic Media (Nauka, Moscow, 1984; Kluwer, Dordrecht, 1989).

    MATH  Google Scholar 

  6. V. A. Marchenko and E. Ya. Khruslov, Boundary Value Problems in Domains with Fine-Grained Boundaries (Naukova Dumka, Kiev, 1974) [in Russian].

    MATH  Google Scholar 

  7. O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization (Mosk. Gos. Univ., Moscow, 1990; North-Holland, Amsterdam, 1992).

    MATH  Google Scholar 

  8. V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators and Integral Functionals (Nauka, Moscow, 1993; Springer-Verlag, Berlin, 1994).

    MATH  Google Scholar 

  9. H. Fujita, “On the blowing up of solution of the Cauchy problem for u t = Δu + u 1+α,” J. Fac. Sci. Univ. Tokyo Sec. I 13, 109–124 (1966).

    Google Scholar 

  10. M. V. Tuvaev, “Homogenization of solutions of an elliptic equation with nonlinear absorption in a perforated domain,” Differ. Equations 35 (6), 854–855 (1999).

    MathSciNet  MATH  Google Scholar 

  11. H. A. Matevossian and S. V. Pikouline, “On the homogenization of weakly nonlinear divergent elliptic operators in a perforated cube,” Math. Notes 68 (3), 337–344 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. A. Matevossian and S. V. Pikulin, “On the homogenization of semilinear elliptic operators in perforated domains,” Sb. Math. 193 (3), 409–422 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. V. Pikulin, “Behavior of solutions of semilinear elliptic equations in domains with complicated boundary,” Russ. J. Math. Phys. 19 (3), 401–404 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. A. Matevossian and I. V. Filimonova, “Homogenization of semilinear parabolic operators in a perforated cylinder,” Math. Notes 78 (3), 364–374 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. A. Matevossian and I. V. Filimonova, “On the averaging of weakly nonlinear parabolic operators in a perforated cylinder,” Russ. Math. (Izv. VUZ Mat.) 49 (9), 27–35 (2005).

    MathSciNet  Google Scholar 

  16. V. A. Kondrat’ev and E. M. Landis, “On qualitative properties of solutions of a nonlinear equation of second order,” Math. USSR-Sb. 63 (2), 337–350 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Littmann, G. Stampacchia, and H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients,” Ann. Scuola Norm. Super. Pisa 17 (1–2), 43–77 (1963).

    MathSciNet  MATH  Google Scholar 

  18. L. Veron, “Singular solutions of some nonlinear elliptic equations,” Nonlinear Anal. Theory Methods Appl. 5 (3), 225–242 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. L. Vasquez and L. Véron, “Removable singularities of strongly nonlinear elliptic equations,” Manuscripta Math. 33, 129–144 (1980/1981).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. L. Vasquez and L. Véron, “Isolated singularities of some semilinear elliptic equations,” J. Differ. Equations 60, 301–322 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. V. Tuvaev, “Removable singular sets for equations of the form \(\sum {\frac{\partial }{{\partial {x_i}}}{a_{ij}}\left( x \right)\frac{{\partial u}}{{\partial {x_j}}}} = f\left( {x,u,\nabla u} \right)\) ,” Math. Notes 52 (3), 983–989 (1992).

    Article  MathSciNet  Google Scholar 

  22. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin, 1983; Nauka, Moscow, 1989).

    Book  MATH  Google Scholar 

  23. R. Adams, Sobolev Spaces (Academic, New York, 1975).

    MATH  Google Scholar 

  24. E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).

    MATH  Google Scholar 

  25. E. De Giorgi, “Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari,” Mem. Accad. Sci. Torino Classe Sci. Fis. Mat. Naturali (III) 125 (3), 25–43 (1957).

    MATH  Google Scholar 

  26. J. Moser, “A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic 'differential equations,” Commun. Pure Appl. Math. 13, 457–468 (1960).

    Article  MATH  Google Scholar 

  27. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1973; Academic, New York, 1968).

    Google Scholar 

  28. Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” Advances in Science and Engineering: Modern Problems in Mathematics (VINITI, Moscow, 1976), Vol. 9, pp. 5–130 [in Russian]

    Google Scholar 

  29. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999; Fizmatlit, Moscow, 2006).

    MATH  Google Scholar 

  30. F. Rellich, “Ein Satz über mittlere Konvergenz,” Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse, II 30–35 (1930).

    MATH  Google Scholar 

  31. V. I. Kondrashov, “Certain properties of functions in the spaces L p,” Dokl. Akad. Nauk SSSR 48, 535–538 (1945).

    Google Scholar 

  32. I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems (Nauka, Moscow, 1990; Am. Math. Soc., Providence, R.I., 1994).

    MATH  Google Scholar 

  33. I. P. Natanson, Theory of Functions of a Real Variable (Ungar, New York, 1955; Nauka, Moscow, 1974).

    MATH  Google Scholar 

  34. V. A. Kondrat’ev and E. M. Landis, “Qualitative theory of second-order linear partial differential equations,” Partial Differential Equations 3: Advances in Science and Engineering: Modern Problems in Mathematics: Fundamental Directions (VINITI, Moscow, 1988), Vol. 32, pp. 99–215.

    Google Scholar 

  35. E. M. Landis, Second-Order Equations of Elliptic and Parabolic Type (Nauka, Moscow, 1971; Am. Math. Soc., Providence, R.I., 1998).

    MATH  Google Scholar 

  36. M. L. Gerver and E. M. Landis, “A generalization of the mean value theorem for functions of several variables,” Dokl. Akad. Nauk SSSR 146 (4), 761–764 (1962).

    MathSciNet  MATH  Google Scholar 

  37. A. P. Morse, “The behavior of a function on its critical set,” Ann. Math. Second Ser. 40 (1), 62–70 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  38. E. M. Landis, “Some problems of the qualitative theory of second order elliptic equations (case of several independent variables),” Russ. Math. Surv. 18 (1), 1–62 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Stampacchia, “Le problème de Dirichlet pour les équations elliptique second ordre à coefficients discontinus,” Ann. Inst. Fourier 15 (1), 189–257 (1965).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Pikulin.

Additional information

Original Russian Text © S.V. Pikulin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 11, pp. 1902–1930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikulin, S.V. Convergence of a family of solutions to a Fujita-type equation in domains with cavities. Comput. Math. and Math. Phys. 56, 1872–1900 (2016). https://doi.org/10.1134/S0965542516110099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516110099

Keywords

Navigation