Skip to main content
Log in

Studies on the zeros of Bessel functions and methods for their computation: 2. Monotonicity, convexity, concavity, and other properties

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

This work continues the study of real zeros of first- and second-kind Bessel functions and Bessel general functions with real variables and orders begun in the first part of this paper (see M.K. Kerimov, Comput. Math. Math. Phys. 54 (9), 1337–1388 (2014)). Some new results concerning such zeros are described and analyzed. Special attention is given to the monotonicity, convexity, and concavity of zeros with respect to their ranks and other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Abramowitz and I. N. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  2. L. Bieberbach, Lehrbuch der Funktionen theorie, Vol. 1: Elemente der Funktionentheorie (Teubner, Leipzig, 1934).

    MATH  Google Scholar 

  3. M. Bôcher, “On certain methods of Sturm and their application to the roots of Bessel functions,” Bull. Am. Math. Soc. 3, 205–213 (1897).

    Article  MATH  Google Scholar 

  4. Á. Elbert, “Concavity of the zeros of Bessel functions,” Studia Sci. Math. Hungarica 12, 81–88 (1977).

    MathSciNet  MATH  Google Scholar 

  5. Á. Elbert, “Some recent results on the zeros of Bessel functions and orthogonal polynomials,” J. Comput. Appl. Math. 133 (1–2), 65–83 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. Á. Elbert, L. Gatteschi, and A. Laforgia, “On the concavity of zeros of Bessel functions,” Appl. Anal. 16 (4), 261–278 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. Á. Elbert, P. Kosik, and A. Laforgia, “Monotonicity properties of the zeros of derivative of Bessel functions,” Studia Sci. Math. Hungarica 25 (4), 377–385 (1990).

    MathSciNet  MATH  Google Scholar 

  8. Á. Elbert and A. Laforgia, “On the zeros of derivatives of Bessel functions,” Z. Angew. Math. Phys. 34 (6), 774–786 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. Á. Elbert and A. Laforgia, “On the square of the zeros of Bessel functions,” SIAM J. Math. Anal. 15 (1), 206–212 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  10. Á. Elbert and A. Laforgia, “On the convexity of the zeros of Bessel functions,” SIAM J. Math. Anal. 16 (3), 614–619 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  11. Á. Elbert and A. Laforgia, “Further results on the zeros of Bessel functions,” Analysis 5, 71–76 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. Á. Elbert and A. Laforgia, “Monotonicity properties of the zeros of Bessel functions,” SIAM J. Math. Anal. 17 (6), 1483–1488 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. Á. Elbert and A. Laforgia, “A convexity property of zeros of Bessel functions,” J. Appl. Math. Phys. (ZAMP) 41 (5), 734–737 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  14. Á. Elbert, A. Laforgia, and L. Lorch, “Additional monotonicity properties of the zeros Bessel functions,” Analysis 11 (4), 293–299 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Erdelyi, F. Magnus, F. G. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

    MATH  Google Scholar 

  16. S. Finch, “Bessel function zeroes,” in Mathematical Constants (Supplementary Material) (Cambridge Univ. Press, Cambridge, 2003), pp. 1–12.

    Google Scholar 

  17. W. Gautschi and C. Giordano, “Luigi Gatteschi’s work on asymptotics of special functions and their zeros,” Numer. Algorithms 49, 11–31 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Giordano and A. Laforgia, “Further properties of the zeros of Bessel functions,” Le Matematiche (Catania) 42, 19–28 (1987).

    MathSciNet  MATH  Google Scholar 

  19. A. Gray, G. B. Mathews, and T. M. MacRobert, A Treatise on Bessel Functions, 2nd ed. (Dover, New York, 1966).

    MATH  Google Scholar 

  20. H. W. Hethcote, “Error bounds for asymptotic approximations of zeros of transcendental functions,” SIAM J. Math. Anal. 1 (2), 147–152 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1944; Faktorial, Moscow, 2003).

    MATH  Google Scholar 

  22. E. Jahnke, F. Emde, and F. Lösch, Tafeln höherer Funktionen (Teubner, Stuttgart 1960; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  23. M. K. Kerimov, “The Rayleigh function: Theory and methods for its calculation,” Comput. Math. Math. Phys. 39 (12), 1883–1925 (1999).

    MathSciNet  MATH  Google Scholar 

  24. M. K. Kerimov, “Overview of some results concerning the theory and applications of the Rayleigh special function,” Comput. Math. Math. Phys. 48 (9), 1454–1507 (2008).

    Article  MathSciNet  Google Scholar 

  25. M. K. Kerimov, “Studies on the zeros of Bessel functions and methods for their computation,” Comput. Math. Math. Phys. 54 (9), 1337–1388 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. K. Kerimov and S. L. Skorokhodov, “Evaluation of complex zeros of Bessel functions J?(z) and I?(z) and their derivatives,” USSR Comput. Math. Math. Phys. 24 (5), 131–141 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. K. Kerimov and S. L. Skorokhodov, “Calculation of the multiple zeros of derivatives of the cylindrical Bessel functions J?(z) and I?(z),” USSR Comput. Math. Math. Phys. 25 (6), 101–107 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Kratzer and W. Franz, Transzendente Funktionen (Akademie-Verlag, Leipzig, 1960; Inostrannaya Literatura, Moscow, 1963).

  29. A. Laforgia, “Sturm theory for certain classes of Sturm–Liouville equations and Turanians and Wronskians for the zeros of derivative of Bessel functions,” Indagat. Math. Proc. Ser. A 85 (3), 295–301 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Laforgia and M. E. Muldoon, “Inequalities and approximations for zeros of Bessel functions of small order,” SIAM J. Math. Anal. 14 (2), 383–388 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Laforgia and M. E. Muldoon, “Monotonicity and concavity properties of zeros of Bessel functions,” J. Math. Anal. Appl. 98 (2), 470–477 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Laforgia, M. E. Muldoon, and P. D. Siafarikas, “Arpad Elbert, 1939–2001: A memorial tribute,” J. Comput. Appl. Math. 153 (1–2), 1–8 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Laforgia and P. Natalini, “Zeros of Bessel functions: Monotonicity, concavity, inequalities,” Mathematiche 62 (11), 255–270 (2007).

    MathSciNet  MATH  Google Scholar 

  34. J. T. Lewis and M. E. Muldodn, “Monotonicity and concavity properties of zeros of Bessel functions,” SIAM J. Math. Anal. 8 (1), 171–178 (1997).

    Article  Google Scholar 

  35. L. Lorch, “Elementary comparison techniques for certain classes of Sturm–Liouville equations,” Proceedings of International Conference on Differential Equations (Univ. Uppsaliensis, Uppsala, 1977), pp. 125–133.

    Google Scholar 

  36. L. Lorch, “Turanians and Wronskians for the zeros of Bessel functions,” SIAM J. Math. Anal. 11, 223–227 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lorch, M. E. Muldoon, and P. Szego, “Higher monotonicity properties of certain Sturm–Liouville functions IV,” Can. J. Math. 24, 349–367 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Lorch, M. E. Muldoon, and P. Szego, “Some monotonicity properties of Bessel functions,” SIAM J. Math. Anal. 4, 385–392 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Lorch and D. J. Newman, “A supplement to the Sturm separation theorem with applications,” Am. Math. Mon. 72, 359–366 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Lorch and P. Szego, “Monotonicity of the difference of zeros of Bessel functions as a function of order,” Proc. Am. Math. Soc. 15, 91–96 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Lorch and P. Szego, “On the zeros of derivatives of Bessel functions,” SIAM J. Math. Anal. 19 (6), 1450–1454 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Makai, “On zeros of Bessel functions,” Univ. Beograd Publ. Elektrotech. Fak. Ser. Mat. Fiz., No. 602–633 109–110 (1978).

    MathSciNet  MATH  Google Scholar 

  43. R. C. McCann, “Inequalities for the zeros of Bessel functions,” SIAM J. Math. Anal. 8 (1), 166–170 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  44. R. C. McCann, “Lowe bounds for the zeros of Bessel functions,” Proc. Am. Math. Soc. 64 (1), 101–103 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  45. R. C. McCann and E. R. Love, “Monotonicity properties of the zeros of Bessel functions,” J. Austral. Math. Soc. Ser. B 24 (1), 67–85 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. G. Mikhlin, Variational Methods of Mathematical Physics (Macmillan, New York, 1964).

    MATH  Google Scholar 

  47. M. E. Muldoon, “The variation with respect to order of zeros of Bessel functions,” Rend. Semin. Mat. Univ. Politech. Torino 39 (2), 15–25 (1981).

    MathSciNet  MATH  Google Scholar 

  48. M. E. Muldoon and R. Spigler, “Some remarks on zeros of cylinder functions,” SIAM. J. Math. Anal. 15 (6), 1231–1233 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  49. NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver, (Cambridge Univ. Press, Cambridge, 2010).

  50. F. W. J. Olver, “A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order,” Proc. Cambridge Philos. Soc. 47, 699–712 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  51. F. W. J. Olver (Ed.), Bessel Functions, Part 3: “Zeros and associated values” (Cambridge Univ. Press, Cambridge, 1960).

    MATH  Google Scholar 

  52. F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974).

    MATH  Google Scholar 

  53. S. J. Putterman, M. Kac, and G. E. Uhlenbeck, “Possible origin of the quantized vortices in He II,” Phys. Rev. Lett. 29, 546–549 (1972).

    Article  Google Scholar 

  54. R. Spigler, “Alcuni risultati sugli zeri delle funzioni cilindriche e delle loro derivate,” Rend. Semin. Mat. Univ. Politech. Torino 38 (1), 67–85 (1980).

    MathSciNet  MATH  Google Scholar 

  55. J. C. F. Sturm, “Sur les équations differentielles linéares du second order,” J. Math. 1, 106–186 (1836).

    Google Scholar 

  56. N. M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (Wiley, New York, 1996).

  57. F. G. Tricomi, “Sulle funzioni di Bessel di ordine e argomento pressoche uguali,” Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 83, 3–20 (1949).

    MathSciNet  MATH  Google Scholar 

  58. J. Vosmanský, “Certain higher monotonicity properties of i-th derivatives of solutions of y″ + a(t)y′ + b(t)y = 0,” Arch. Math. (Brno) 10, 87–102 (1974).

    MathSciNet  MATH  Google Scholar 

  59. J. Vosmanský, “Certain higher monotonicity properties of Bessel functions,” Arch. Math. (Brno) 13, 55–64 (1977).

    MathSciNet  MATH  Google Scholar 

  60. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge Univ. Press, Cambridge, 1944).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Kerimov.

Additional information

Dedicated to the 60th anniversary of the foundation of Dorodnicyn Computing Center of the Russian Academy of Sciences

Original Russian Text © M.K. Kerimov, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 7, pp. 1200–1235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerimov, M.K. Studies on the zeros of Bessel functions and methods for their computation: 2. Monotonicity, convexity, concavity, and other properties. Comput. Math. and Math. Phys. 56, 1175–1208 (2016). https://doi.org/10.1134/S0965542516070095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516070095

Keywords

Navigation