R. I. Soloukhin, “On the detonation in the gas heated by a shock wave,” Prikl. Mekh. Tekh. Fiz., No. 4, 42–48 (1964).
Google Scholar
R. I. Soloukhin, “The zone of exothermic reaction in a one-dimensional shock wave in gases,” Fiz. Goreniya Vzryva, No. 3, 2–18 (1966).
Google Scholar
R. I. Soloukhin, Measurement Methods and Basic Results in Experiments on Shock Tubes (Nauka, Novosibirsk, 1969) [in Russian].
Google Scholar
R. I. Soloukhin, Shock Waves and Detonation in Gases (Fizmatgiz, Moscow, 1963) [in Russian].
Google Scholar
V. V. Mitrofanov and R. I. Soloukhin, “On the diffraction of multifront detonation wave,” Dokl. Akad. Naur SSSR 159, 1003–1006 (1964).
Google Scholar
R. I. Soloukhin, “The structure of the multifront detonation wave in gases,” Fiz. Goreniya Vzryva, No. 2, 35–42 (1965).
Google Scholar
V. P. Korobeinikov and V. A. Levin, “A strong explosion in a combustible gas mixture,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 6, 48–51 (1969).
Google Scholar
G. G. Chernyi, “An asymptotic law of the plane detonation wave propagation,” Dokl. Akad. Nauk SSSR 172, 558–560 (1967).
Google Scholar
V. A. Levin and G. G. Chernyi, “Asymptotic laws of detonation wave behavior,” Prikl. Mat. Mekh. 31, 383–405 (1967).
Google Scholar
V. P. Korobeinikov, V. A. Levin, V. V. Markov, and G. G. Chernyi, “Propagation of blast waves in a combustible gas,” Astronautica Acta 17 (5–6), 529–537 (1972).
Google Scholar
V. A. Levin and V. V. Markov, “On the occurrence of detonation under the concentrated supply of energy,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 5, 89–93 (1974).
Google Scholar
V. A. Levin and V. V. Markov, “Investigation of the occurrence of detonation under the concentrated supply of energy,” Fiz. Goreniya Vzryva 2, 623–629 (1975).
Google Scholar
V. P. Korobeinikov and V. V. Markov, On propagation of combustion and detonation // Archiwum procesow spalania 8 (1), 101–118 (1977).
Google Scholar
L. I. Sedov, V. P. Korobeinikov, and V. V. Markov, “The theory of blast wave propagation,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 225, 178–216 (1986).
MathSciNet
MATH
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Direct initiation of detonation in a hydrogen–oxygen mixture diluted with nitrogen,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 6, 151–156 (1992).
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Simulation of initiation of detonation in inflammable gas mixture by electric charge,” Khim. Fiz. 3, 611–613 (1984).
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in hydrogen–air mixture by the explosion of a spherical TNT charge,” Fiz. Goreniya Vzryva 31 (2), 91–95 (1995).
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in the inhomogeneous hydrogen–air mixture,” Report No. 4376, Inst. Mekh. RAN (Mosk. Gos. Univ., Moscow, 1995).
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in the hydrogen–air mixture by an explosive charge surrounded by an inert gas layer," Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 4, 32–34 (1997).
MATH
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “The effect of air interlayer on the Shock Initiation of detonation in a hydrogen–air mixture,” Proc. Steklov Inst. Math. 223, 131–138 1998.
MATH
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Detonation wave reinitiation using a disintegrating shell,” Dokl. Akad. Nauk SSSR 352 (1), 48–50 (1997).
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “The Influence of the disintegrating shell on the initiation of detonation in the hydrogen–air mixture,” XI Symp. on Combustion and Explosion, Chernogolvka, Russia, 1998, Vol. 2, pp. 169–170.
Google Scholar
V. A. Levin, V. V. Markov, and S. F. Osinkin, “Stabilization of detonation in supersonic flows of combustible gas mixtures,” Proc. of the 16th Int. Colloquium on the dynamics of explosions and reactive systems, Cracow, Poland, 1997, pp. 529–537.
Google Scholar
V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, “Direct initiation of detonation in hydrogen air mixtures by decomposition of low pressure domain without energy input,” Archivum combustionis 18 (1-4), 125–133 (1998).
Google Scholar
V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, “Direct initiation of detonation in a hydrogen–air mixture by a converging shock wave,” Khim. Fiz. 20 (5), 26–30 (2001).
Google Scholar
V. A. Levin, V. V. Markov, S. F. Osinkin, and T. A. Zhuravskaya, “Determination of critical conditions of initiation of detonation in a bounded volume by shock wave converging to the center,” Fiz. Goreniya Vzryva 38 (6), 96–102 (2002).
Google Scholar
T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, “Influence of the destructible shell on the formation of detonation in a bounded volume by a converging shock wave,” Khim. Fiz. 22 (8), 34–37 (2003).
Google Scholar
V. V. Markov, “Numerical simulation of the formation of multifront structure of the detonation wave,” Dokl. Akad. Nauk SSSR 258 (2), 158–163 (1981).
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation,” Proc. Steklov Inst. Math. 251, 192–205 (2005).
MathSciNet
MATH
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Initiation of gas detonation by electric discharges,” in Pulse Detonation Engines (TORUS, Moscow, 2006), pp. 120–138.
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Initiation and propagation of detonation in channels of complex shape,” in Pulse and Continuous Detonation Propulsion, Ed. by G. D. Roy and S. M. Frolov Frolov (TORUS, Moscow, 2006), pp. 97–106.
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Determination of the critical conditions of the propagation of detonation waves is channels of complex shapes,” in Modern Problems of Fast Processes and Catastrophic Events, Ed. by O. M. Belotserkovskii (dNauka, Moscow, 2007), pp. 75–88 [in Russian].
Google Scholar
Levin V.A., Markov V.V., T. A. Zhuravskaya, and S. F. Osinkin, “Influence of obstacles on detonation wave propagation,” in Deflagrative and Detonative Combustion, Ed. by G. Roy and S. Frolov (TORUS, Moscow, 2010), pp. 221–228.
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Initiation, propagation, and stabilization of detonation waves in a supersonic strem,” in Problems of Modern Mechanics (Mosk. Gos. Univ., Moscow, 2008), pp. 240–259 [in Russian].
Google Scholar
V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Initiation, propagation and stabilization of detonation in the supersonic gas flow,” Proc. of the 7th Int. Symposium on Hazards Prevention and Migration of Industrial Explosions (ISHPMIE), St. Petersburg, Russia, 2008, Vol. 2, pp. 110–118.
Google Scholar
V. A. Levin, V. V. Markov, and A. N. Khmelevskii, “Theoretical and experimental investigation of the operation of a pulse detonation engine,” Khim. Fiz. 24 (7), 37–43 (2005).
Google Scholar
E. M. Barkhudarov and N. K. Berezhetskaya, T. A. Zhuravskaya, V. A. Kop’ev, I. A. Kossyi, V. A. Levin, V. V. Markov, N. A. Popov, M. I. Taktakishvili, N. M. Tarasova, and S. M. Temchin, “An axisymmetric electric discharge as a means for remote heating of gas and for ignition of combustible gas mixture,” Fizika Plazmy 35, 1001–1010 (2009).
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Optimization of the thrust performance of a pulsed detonation engine,” Combust., Explos., Shock Waves 46, 418–425 (2010).
Article
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “New effects of stratified gas detonation,” Dokl. Phys. 55, 28–32 (2010).
Article
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer,” Fluid Dyn. 45, 827–835 (2010).
MathSciNet
Article
MATH
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Formation of Detonation in Rotating Channels,” Dokl. Phys. 55, 308–311 (2010).
Article
MATH
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls,” J. Appl. Mech. Tech. Phys. 51, 463–470 (2010).
Article
MATH
Google Scholar
V. A. Levin, N. E. Afonina, V. G. Gromov, G. D. Smekhov, A. N. Khmelevsky, and V. V. Markov, “Gas dynamics and thrust in the exhaust system of a jet engine with an annular nozzle,” Combust., Explos., Shock Waves 48 (4), 406–417 (2012).
Article
Google Scholar
V. A. Levin, N. E. Afonina, V. G. Gromov, G. D. Smekhov, A. N. Khmelevsky, and V. V. Markov, “Investigating an annular nozzle on combustion products of hydrocarbon fuels,” Thermophys. Aeromech. 20, 265–272 (2013).
Article
Google Scholar
V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Mathematical modeling of shock-wave processes under gas–solid boundary interaction,” Proc. Steklov Inst. Math. 281, 37–48 (2013).
Article
MATH
Google Scholar
V. A. Levin, N. E. Afonina, V. G. Gromov, I. S. Manuylovich, V. V. Markov, G. D. Smekhov, and A. N. Khmelevskii, “Experimental and numerical simulation of the flow in a driving module with an annular and linear double-slot nozzle,” High Temp. 51, 681–689 (2013).
Article
Google Scholar
L. V. Gurvich, G. A. Khachkuruzov, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances: Handbook, Vol. 1. (Nauka, Moscow, 1978) [in Russian].
Google Scholar
C. K. Westbrook and F. L. Dryer, “Chemical kinetic modeling of hydrocarbon combustion,” Prog. Energy Combust. Sci. 10, 1–57 (1984).
Article
Google Scholar
S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Fluid Dynamics Problems (Nauka, Moscow, 1976) [in Russian].
Google Scholar
V. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, and V. Voevodin, “Practice of the Lomonosov supercomputer,” Otkrytye Sist., No. 7, 36–39 (2012).
Google Scholar