Skip to main content
Log in

Combination of numerical and structured approaches to the construction of a second-order incomplete triangular factorization in parallel preconditioning methods

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Parallel versions of the stabilized second-order incomplete triangular factorization conjugate gradient method in which the reordering of the coefficient matrix corresponding to the ordering based on splitting into subdomains with separators are considered. The incomplete triangular factorization is organized using the truncation of fill-in “by value” at internal nodes of subdomains, and “by value” and ‘by positions” on the separators. This approach is generalized for the case of constructing a parallel version of preconditioning the second-order incomplete LU factorization for nonsymmetric diagonally dominant matrices with. The reliability and convergence rate of the proposed parallel methods is analyzed. The proposed algorithms are implemented using MPI, results of solving benchmark problems with matrices from the collection of the University of Florida are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum, New York, 1988; Mir, Moscow, 1991).

    Book  MATH  Google Scholar 

  2. O. Yu. Milyukova, “Parallel approximate factorization method for solving discrete elliptic equations,” Parallel Comput. No. 27, 1365–1379 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Yu. Milyukova, “Parallel Iterative Methods Using Factorized Preconditioning Matrices for Solving Elliptic Equations on Triangular Grids,” Comput. Math. Math. Phys. 46, 1044–1060 (2006).

    Article  MathSciNet  Google Scholar 

  4. J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems, of which the coefficient matrix is a symmetric M-matrix,” Math. Comput. 31 (137), 148–162 (1977).

    MathSciNet  MATH  Google Scholar 

  5. I. Gustafsson, “A Class of first order factorization methods,” BIT 18, 142–156 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Axelsson, “A generalazed SSOR method,” BIT 13, 443–467 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. S. Duff and G. A., Meurant, “The effect of ordering on preconditioned conjugate gradients,” BIT 29, 625–657 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Doi, “On parallelism and convergence of incomplete LU factorizations,”: Trans. IMACS, Appl. Numer. Math. 7 (5), 417–436 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Notay, “An efficient parallel discrete PDE solver,” Parallel Comput. 21, 1725–1748 (1995).

    Article  MathSciNet  Google Scholar 

  10. I. E. Kaporin, “High quality preconditionings of a general symmetric positive definite matrix based on its U т U + U т R + R т U–decomposition,” Numer. Linear Algebra Appl. 5, 483–509 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. E. Kaporin and I. N. Kon’shin, “Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks,” Comput. Math. Math. Phys. 41, 481–493 (2001).

    MathSciNet  MATH  Google Scholar 

  12. I. E. Kaporin and O. Yu. Milyukova, “A massively parallel algorithm of the preconditioned conjugate gradient method for the numerical solution of systems of linear algebraic equations,” in Proc. of the Department of Applied Optimization of the Computing Center, Russian Academy of Sciences, Ed. By V. G. Zhadan (Vychisl. Tsentr, Ross. Akad. Nauk, Moscow, 2011), pp. 32–49.

    Google Scholar 

  13. I. E. Kaporin, O. Yu. Milyukova, and Yu. G. Bartenev, “Massively parallel preconditioned methods for solving SLAEs with large sparse matrices,” Proc. XIII All-Russia Conf. on High Performance Parallel Computations on Clusters, Ed. By V. P. Gergel (Nizhegorodsk. Gos. Univ., Nizhnii Novgorod, 2013), pp. 151–156.

    Google Scholar 

  14. I. E. Kaporin and O. Yu. Milyukova, “Preconditioning of iterative methods for the efficient massively parallel solution of systems of linear algebraic equations,” Proc. of the XIII Int. Seminar on Supercomputations and Mathematical Modelling, Sarov, Russia, 2011, pp. 243–252.

    Google Scholar 

  15. K. Yu. Bogachev and Ya. V. Zhabitskii, “Kaporin–Kon’shin’s method of parallel implementation of block preconditioners for asymmetric matrices in problems of filtration of a multicomponent mixture in a porous medium,” Mosc. Univ. Math. Bull. 65, 44–50 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. A. Kharchenko, “Effect of parallelization of computations with surface interprocessor boundaries on the scalability of a parallel iterative algorithm for solving systems of linear equations in computational fluid dynamics,” Proc. of the Int. Conf. on parallel computational technologies (PaVT’2008), St. Petersburg, 2008,” (Yuzhno-Ural’sk. Gos. Univ., Chelyabinsk, 2008), pp. 494–499.

    Google Scholar 

  17. I. N. Kon’shin and S. A. Kharchenko, “A parallel algorithm for the construction of the second-order incomplete triangular factorization with the dynamic choice of domain decomposition and reordering,” (Yuzhno-Ural’sk. Gos. Univ., Chelyabinsk, 2008), pp. 491–494.

    Google Scholar 

  18. V. L. Yakushev, V. N. Simbirkun, A. V. Filimonov, P. A. Novikov, I. N. Kon’shin, G. B. Sushko, and S. A. Kharchenko, “Solution of ill-conditioned SLAEs for structural mechanics by parallel iterative methods,” Vestn. Nizhegorodsk. Gos. Univ., No. 4 (1), 238–246 (2012).

    Google Scholar 

  19. G. Karypis and V. Kumar, “Parallel threshold-based ILU factorization,” Supercomputing’97: Proc. of the ACM/IEEE Conference on Supercomputing, Minnesota, 1997 (IEEE, 1997).

    Google Scholar 

  20. O. Yu. Milyukova, “Parallel versions of the 2nd order incomplete triangular factorization preconditioned conjugate gradient method using special matrix reordering,” Preprint No. 52, IPM RAN (Keldysh Inst. Of Appl. Math., Russian Academy of Sciences, 2014). http://keldysh.ru/papers/2014/prep2014_52.pdf

    Google Scholar 

  21. O. Yu. Milyukova, “Combining incomplete factorization strategies “by value” and “by position” for the 2nd order incomplete triangular factorization in parallel algorithms for the preconditioned conjugate gradient method,” Preprint No. 10, IPM RAN (Keldysh Inst. Of Appl. Math., Russian Academy of Sciences, 2014). http://keldysh.ru/papers/2015/prep2015_10.pdf

    Google Scholar 

  22. T. A. Davis and Y. F. Hu, “University of Florida sparse matrix collection,” ACM Trans. Math. Software 38 (2011). http://www.cise.ufl.edu/research/sparse/matrices

  23. M. Tismenetsky, “A new preconditioning technique for solving large sparse linear systems,” Linear Algebra Appl. 154–156, 331–353 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Suarjana and K. H. Law, “A robust incomplete factorization based on value and space constraints,” Int. J. Numer. Meth. Eng. 38, 1703–1719 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  25. T. A. Manteuffel, “An incomplete factorization technique for positive definite linear systems,” Math. Comput. 34, 473–497 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Yamazaki, Z. Bai, W. Chen, and R. Scalettar, “A high-quality preconditioning technique for multi-lengthscale symmetric positive definite linear systems,” Numer. Math. Theor. Meth.

  27. A. Jennings and G. M. Malik, “Partial elimination,” IMA J. Appl. Math. 20, 307–316 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. A. Van der Vorst, “Bi-CGStab: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput. 13, 631–644 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Knight, “The Sinkhorn–Knopp algorithm: Convergence and applications,” SIAM J. Matrix. Anal. Appl. 30, 261–275 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  30. I. E. Kaporin and I. N. Kon’shin, “Optimization of matrix scaling in CGSOL code,” NeurOK Techsoft Rept, 2003.

    Google Scholar 

  31. D. S. Kershaw, “On the problem of unstable pivots in the incomplete LU-conjugate gradient method,” J. Comp. Phys. 38, 114–123 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Pissanetzky, Sparse Matrix Technology (Academic, London, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

  33. I. E. Kaporin, “Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method,” Comput. Math. Math. Phys. 52, 169–193 (2012). T. 52. № 2. C. 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. V. Yakobovskii, “An incremental algorithm for the decomposition of graphs,” Vestn. Nizh. Univ., Ser. Mat. Model. Optim. Upr., No. 1 (28), 243–250 (2005).

    Google Scholar 

  35. E. N. Golovchenko, “A parallel package for the decomposition of large grids,” Mat. Model. 23, 3–18 (2011).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Milyukova.

Additional information

Original Russian Text © O.Yu. Milyukova, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 711–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyukova, O.Y. Combination of numerical and structured approaches to the construction of a second-order incomplete triangular factorization in parallel preconditioning methods. Comput. Math. and Math. Phys. 56, 699–716 (2016). https://doi.org/10.1134/S096554251605016X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251605016X

Keywords

Navigation