Skip to main content
Log in

Detailed simulation of the pulsating detonation wave in the shock-attached frame

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper is devoted to the numerical investigation of the stability of propagation of pulsating gas detonation waves. For various values of the mixture activation energy, detailed propagation patterns of the stable, weakly unstable, irregular, and strongly unstable detonation are obtained. The mathematical model is based on the Euler system of equations and the one-stage model of chemical reaction kinetics. The distinctive feature of the paper is the use of a specially developed computational algorithm of the second approximation order for simulating detonation wave in the shock-attached frame. In distinction from shock capturing schemes, the statement used in the paper is free of computational artifacts caused by the numerical smearing of the leading wave front. The key point of the computational algorithm is the solution of the equation for the evolution of the leading wave velocity using the second-order grid-characteristic method. The regimes of the pulsating detonation wave propagation thus obtained qualitatively match the computational data obtained in other studies and their numerical quality is superior when compared with known analytical solutions due to the use of a highly accurate computational algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vasiliev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases”, Combust. Expl. Shock Waves, 23, 605–623 (1987).

    Article  Google Scholar 

  2. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation,” Proc. Steklov Inst. Math. 251, 192–205 (2005).

    MathSciNet  MATH  Google Scholar 

  3. L. K. Cole, A. R. Karagozian, and J.-L. Cambier, “Stability of flame-shock coupling in detonation waves: ID dynamics,” Combustion Sci. Technol. 184, 1502–1525 (2012).

    Article  Google Scholar 

  4. L. M. Faria, A. R. Kasimov, and R. R. Rosales, “Study of a model equation in detonation theory,” SIAM J. Appl. Math. 74 (2), 547–570 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. I. Lopato and P. S. Utkin, “Pulsating detonation wave investigation using shock-capturing methods and calculations in shock-attached frame” Gorenie vzryv 8 (1), 145–150 (2015).

    Google Scholar 

  6. L. I. Sedov, V. P. Korobeinikov, and V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math. 2, 187–228 (1988).

    MATH  Google Scholar 

  7. L. He and J. H. S. Lee, “The dynamical limit of one-dimensional detonations,” Phys. Fluids 7, 1151–1158 (1995).

    Article  MATH  Google Scholar 

  8. A. K. Henrick, T. D. Aslam, and J. M. Powers, “Simulations of pulsating one-dimensional detonations with true fifth order accuracy,” J. Comput. Phys. 213 (2), 311–329 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. R. Kasimov and D. S. Stewart, “On the dynamics of the self-sustained one-dimensional detonations: A numerical study in the shock-attached frame,” Phys. Fluids 16 (10), 3566–3578 (2004).

    Article  MATH  Google Scholar 

  10. T. D. Aslam and J. M. Powers, “The dynamics of unsteady detonation in ozone,” Proc. of the 47th AIAA Aerospace Sci. Meeting and Exhibition, Orlando, Florida, 2009, Paper No. 2009-0632.

    Google Scholar 

  11. C. M. Romick, T. D. Aslam, and J. M. Powers, “The dynamics of unsteady detonation with diffusion,” Proc. of the 49th AIAA Aerospace Sci. Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, Paper No. 2011-799.

    Google Scholar 

  12. H. I. Lee and D. S. Stewart, “Calculation of linear detonation instability: One-dimensional instability of plane detonation,” J. Fluid Mech. 216, 103–132 (1990).

    Article  MATH  Google Scholar 

  13. Y. Daimon and A. Matsuo, “Detailed features of one-dimensional detonations,” Phys. Fluids 15 (1), 112–122 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. H. S. Lee, The Detonation Phenomenon (Cambridge University Press, 2008).

    Book  Google Scholar 

  15. A. S. Kholodov, “Numerical methods for the solution of hyperbolic equations and systems of equations,” in Encyclopedia of Low-Temperature Plasma, Part 2 (Nauka, Moscow, 2008), pp. 220–235 [in Russian].

    Google Scholar 

  16. A. G. Kulikovskii, N. G. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  17. C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,” ICASE Report No 97-65, NASA/CR-97-206253, 1997.

    MATH  Google Scholar 

  18. C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. V. Semenov, P. S. Utkin, I. F. Akhmed’yanov, and I. S. Men’shov, “Application of high performance computing to the solution of interior ballistics problems,” Vychisl. Metody Programm. 12, 183–193 (2011).

    Google Scholar 

  20. A. I. Lopato and P. S. Utkin, “Mathematical modeling of pulsating detonation wave using ENO-schemes of different approximation orders,” Komp’yut. Issledovaniya Modelir. 6 (5), 643–653 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Lopato or P. S. Utkin.

Additional information

Original Russian Text © A.I. Lopato, P.S. Utkin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 856–868.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopato, A.I., Utkin, P.S. Detailed simulation of the pulsating detonation wave in the shock-attached frame. Comput. Math. and Math. Phys. 56, 841–853 (2016). https://doi.org/10.1134/S0965542516050134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516050134

Keywords

Navigation