Skip to main content
Log in

To the theory of volterra integral equations of the first kind with discontinuous kernels

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A nonclassical Volterra linear integral equation of the first kind describing the dynamics of an developing system with allowance for its age structure is considered. The connection of this equation with the classical Volterra linear integral equation of the first kind with a piecewise-smooth kernel is studied. For solving such equations, the quadrature method is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Magnitskii, “On the existence of multiparameter families of solutions to Volterra integral equations of the first kind,” Dokl. Akad. Nauk SSSR 235 (4), 772–774 (1977).

    MathSciNet  Google Scholar 

  2. N. A. Magnitskii, “Multiparameter families of solutions of Volterra integral equations of the first kind,” Dokl. Akad. Nauk SSSR 240 (2), 268–271 (1978).

    MathSciNet  Google Scholar 

  3. N. A. Magnitskii, “Volterra linear integral equations of the first and third kinds,” USSR Comput. Math. Math. Phys. 19 (4), 182–200 (1979).

    Article  MathSciNet  Google Scholar 

  4. N. A. Magnitskii, Asymptotic Methods for Analysis of Nonstationary Controlled Systems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  5. V. M. Glushkov, “On a class of dynamic macroeconomic models,” Upr. Sist. Mashiny, No. 2, 3–6 (1977).

    Google Scholar 

  6. A. S. Apartsin, E. V. Markova, and V. V. Trufanov, Preprint No. 1, ISEM SO RAN (Melentiev Energy Systems Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, 2002) [in Russian].

    Google Scholar 

  7. A. S. Apartsin, I. V. Karaulova, E. V. Markova, and V. V. Trufanov, “Application of Volterra integral equations in the modelling of strategies for electric power re-equipment,” Elektrichestvo, No. 10, 69–75 (2005).

    Google Scholar 

  8. A. S. Apartsin and I. V. Sidler, “Using the nonclassical Volterra equations of the first kind to model the developing systems,” Autom. Remote Control 74 (6), 899–910 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. S. Apartsin and I. V. Sidler, “Integral models of development of electric power systems with allowance for aging of equipment of electric power plants,” Elektron. Model. 36 (4), 81–88 (2014).

    Google Scholar 

  10. V. M. Glushkov, V. V. Ivanov, and V. M. Yanenko, Modeling of Developing Systems (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  11. Yu. P. Yatsenko, Integral Models of Systems with Controllable Memory (Naukova Dumka, Kiev, 1991) [in Russian].

    MATH  Google Scholar 

  12. N. Hritonenko and Yu. Yatsenko, Applied Mathematical Modeling of Engineering Problems (Kluwer Academic, Dordrecht, 2003).

    Book  MATH  Google Scholar 

  13. A. S. Apartsin, Nonclassical Volterra Integral Equations of the First Kind: Theory and Numerical Methods (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  14. D. N. Sidorov, “On parameter families of solutions to the Volterra integral equations of the first kind with piecewise smooth kernels,” Differ. Equations 49 (3), 209–215 (2013).

    MathSciNet  Google Scholar 

  15. D. N. Sidorov, Analysis Methods for Integral Dynamical Models: Theory and Applications (Irkut. Gos. Univ., Irkutsk, 2013) [in Russian].

    Google Scholar 

  16. D. Sidorov, Integral Dynamical Models: Singularities, Signals, and Control, World Sci. Ser. Nonlinear Sci. Ser. A, Vol. 87 (Singapore, 2014).

    Book  MATH  Google Scholar 

  17. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977; Pergamon, Oxford, 1982).

    MATH  Google Scholar 

  18. R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert’s W function in Maple,” Maple Technical Newsletter, No. 9 (1993).

  19. R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5, 329–359 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. E. Dubinov, I. D. Dubinova, and S. K. Saikov, The Lambert W Function and Its Application in Problems of Mathematical Physics (Ross. Fed. Yadern. Tsentr Vseross. Nauchn. Issled. Inst. Eksp. Fiz., Sarov, 2006) [in Russian].

    MATH  Google Scholar 

  21. A. S. Apartsin and I. V. Sidler, “Numerical solution of Volterra integral equations of the first kind in integral models of developing systems, Proceedings of the International Symposium on Generalized Formulations and Solution of Control Problems (ANO, Moscow, 2014), pp. 21–25.

    Google Scholar 

  22. A. S. Apartsin and I. V. Sidler, “Numerical solution of nonclassical Volterra integral equations of the first kind,” Proceedings of the 9th International Science and Technology Conference on Analytical and Numerical Methods for Modeling Natural Science and Social Problems (Penza, 2014), pp. 59–64.

    Google Scholar 

  23. A. S. Apartsin, “Multilinear Volterra equations of the first kind,” Autom. Remote Control 65 (2), 263–269 (2004).

    Article  MathSciNet  Google Scholar 

  24. A. S. Apartsin, “Multilinear Volterra integral equations of the first kind: Elements of theory and numerical methods,” Izv. Irkut. Gos. Univ. Ser. Mat., No. 1, 13–41 (2007).

    Google Scholar 

  25. A. S. Apartsin, “On the convergence of numerical methods for solving a Volterra bilinear equation of the first kind,” Comput. Math. Math. Phys. 47 (8), 1323–1331 (2007).

    Article  MathSciNet  Google Scholar 

  26. A. S. Apartsyn, “Polynomial Volterra integral equations of the first kind and the Lambert function,” Proc. Steklov Inst. Math. 280, Suppl. 1, 26–38 (2013).

    Article  Google Scholar 

  27. N. Ya. Vilenkin, Combinatorics (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  28. A. S. Apartsyn, “On an approach to modeling of developing systems,” CD Proceedings of the International Workshop on Generalized Statements and Solutions of Control Problems (Gelendzhik–Divnomorskoe, 2012), pp. 32–35.

    Google Scholar 

  29. A. S. Apartsin, “On Some classes of linear Volterra integral equations,” Abstract Appl. Anal. 2014, Article ID 532409 (2014); http://dx.doi.org/. doi 10.1155/2014/532409

    Google Scholar 

  30. A. S. Apartsin, “Nonclassical Volterra integral equations of the first kind in integral models of developing systems,” Elektron. Model. 36 (3), 3–14 (2014).

    Google Scholar 

  31. A. S. Apartsin and I. V. Sidler, “On a stable numerical differentiation method,” Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki (2015) (in press).

    Google Scholar 

  32. I. V. Sidler, “Software code for the numerical solution of nonclassical Volterra integral equations of the first kind by applying a modified left endpoint rule,” Russian Federation Inventor’s Certificate No. 2015612206, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Apartsin.

Additional information

Original Russian Text © A.S. Apartsin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 824–839.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apartsin, A.S. To the theory of volterra integral equations of the first kind with discontinuous kernels. Comput. Math. and Math. Phys. 56, 810–825 (2016). https://doi.org/10.1134/S0965542516050067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516050067

Keywords

Navigation