Skip to main content
Log in

Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of a resolving sequence of (scalar) operators for a given differential or difference system with coefficients in some differential or difference field K. We propose an algorithm to construct, such a sequence, and give some examples of the use of this sequence as a suitable auxiliary tool for finding certain kinds of solutions of differential and difference systems of arbitrary order. Some experiments with our implementation of the algorithm are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abramov, “EG-Eliminations,” J. Differ. Equations Appl. 5, 393–433 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Abramov and M. A. Barkatou, “Rational solutions of first-order linear difference systems,” in ISSAC’98 Proceedings (1998), pp. 124–131.

    Google Scholar 

  3. S. Abramov and M. A. Bronstein, “On solutions of linear functional systems,” in ISSAC’2001 Proceedings (2001), pp. 1–6.

    Google Scholar 

  4. S. Abramov, M. Bronstein, and D. Khmelnov, “On regular and logarithmic solutions of ordinary linear differential systems,” Proceedings of CASC’05 Lect. Notes Comput. Sci. 3718, 1–12 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Abramov, A. Gheffar, and D. Khmelnov, “Factorization of polynomials and gcd computations for finding universal denominators,” in CASC’2010 Proceedings (2010), pp. 4–18.

    Google Scholar 

  6. S. Abramov, A. Gheffar, and D. Khmelnov, “Rational solutions of linear difference equations: Universal denominators and denominator bounds,” Program. Comput. Software, No 2, 78–86 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Abramov and D. Khmelnov, “Denominators of rational solutions of linear difference systems of arbitrary order,” Program. Comput. Software, No 2, 84–91 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Abramov and D. Khmelnov, “On singular points of solutions of linear differential systems with polynomial coefficients,” J. Math. Sci. 185 (3), 347–359 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Abramov and D. Khmelnov, “Linear differential and difference systems: EGδ-and EGσ-eliminations,” Program. Comput. Software, No 2, 91–109 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Abramov, P. Paule, M. Petkovšek, “q-Hypergeometric solutions of q-difference equations,” Discrete Math. 180, 3–22 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Abramov and M. Petkovšek, “Rational normal forms and minimal representation of hypergeometric terms,” J. Symb. Comput. 33, 521–543 (2002).

    Article  MATH  Google Scholar 

  12. S. Abramov, M. Petkovšek, and A. Ryabenko, “Hypergeometric solutions of first-order linear difference systems with rational-function coefficients,” CASC’2015 Proceedings, Lect. Notes Comput. Sci. 9301, 1–14 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, Mass., 1976), Vol. 2.

    MATH  Google Scholar 

  14. G. E. Andrews, q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series, No. 66 (Am. Math. Soc., Providence, R.I., 1986).

    MATH  Google Scholar 

  15. M. A. Barkatou, “A fast algorithm to compute the rational solutions of systems of linear differential equations,” RR 973-M-Mars 1997 (IMAG–LMC, Grenoble, 1997).

    Google Scholar 

  16. M. A. Barkatou, “Rational solutions of matrix difference equations: Problem of equivalence and factorization,” in ISSAC’99 Proceedings (ACM, 1999), pp. 277–282.

    Google Scholar 

  17. M. A. Barkatou, “An algorithm for computing a companion block diagonal form for a system of linear differential equations,” Appl. Algebra Eng. Commun. Comput. 4, 185–195 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. A. Barkatou, “An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system,” Appl. Algebra Eng. Commun. Comput. 8, 1–23 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. A. Barkatou, Hypergeometric solutions of linear difference systems, http://www.ricam.oeaw.ac.at/conferences/aca08/aadios.html

  20. A. Bostan, F. Chyzak, and E. de Panafieu, “Complexity estimates for two uncoupling algorithms,” ISSAC’2013 Proceedings (2013), pp. 85–92.

    Google Scholar 

  21. M. Bronstein, M. Petkovšek, “An introduction to pseudo-linear algebra,” Theor. Comput. Sci. 157, 3–33 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Cluzeau and M. van Hoeij, “A modular algorithm to compute the exponential solutions of a linear differential operator,” J. Symb. Comput. 38, 1043–1076 (2004).

    Article  MATH  Google Scholar 

  23. T. Cluzeau and M. van Hoeij, “Computing hypergeometric solutions of linear difference equations,” Appl. Algebra Eng. Commun. Comput. 17, 83–115 (2006).

    Article  MATH  Google Scholar 

  24. M. van Hoeij, “Rational solutions of linear difference equations,” in ISSAC’98 Proceedings, (ACM, 1998), pp. 120–123.

    Google Scholar 

  25. M. van Hoeij, “Finite singularities and hypergeometric solutions of linear recurrence equations,” J. Pure Appl. Algebra 139, 109–131 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Khmelnov, “Search for polynomial solutions of linear functional systems by means of induced recurrences,” Program. Comput. Software 30 (2) 61–67 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Petkovšek, “Hypergeometric solutions of linear recurrences with polynomial coefficients,” J. Symb. Comput. 14, 243–264 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Storjohann, “High-order lifting and integrality certification,” J. Symb. Comput. 36, 613–648 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. Maple online help, http://www.maplesoft.com/support/help/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Abramov, M. Petkovšek or A. A. Ryabenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, S.A., Petkovšek, M. & Ryabenko, A.A. Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order. Comput. Math. and Math. Phys. 56, 894–910 (2016). https://doi.org/10.1134/S096554251605002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251605002X

Keywords

Navigation