Advertisement

Regularized shallow water equations for numerical simulation of flows with a moving shoreline

  • O. V. Bulatov
  • T. G. ElizarovaEmail author
Article

Abstract

A numerical algorithm for simulating free-surface flows based on regularized shallow water equations is adapted to flows involving moving dry-bed areas. Well-balanced versions of the algorithm are constructed. Test computations of flows with dry-bed areas in the cases of water runup onto a plane beach and a constant-slope beach are presented. An example of tsunami simulation is given.

Keywords

shallow water equations regularization finite volume method well-balanced condition flow with dry-bed areas tsunami wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Stoker, Water Waves (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1959).zbMATHGoogle Scholar
  2. 2.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).zbMATHGoogle Scholar
  3. 3.
    B. W. Levin and M. A. Nosov, Physics of Tsunamis (Springer, Berlin, 2008).Google Scholar
  4. 4.
    T. G. Elizarova and O. V. Bulatov, “Regularized shallow water equations and a new method of simulation of the open channel flows,” Int. J. Comput. Fluids. 46, 206–211 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows,” Comput. Math. Math. Phys. 51 (1), 160–173 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer-Verlag, Berlin, 2009).CrossRefzbMATHGoogle Scholar
  7. 7.
    Yu. V. Sheretov, Continuum Dynamics under Spatiotemporal Averaging (NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009).Google Scholar
  8. 8.
    T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, Preprint Nos. 33, 36, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011).Google Scholar
  9. 9.
    T. G. Elizarova, M. A. Istomina, and N. K. Shelkovnikov, “Numerical simulation of solitary wave generation in a wind-water circular tunnel,” Math. Models Comput. Simul. 4 (6), 552–559 2012.CrossRefzbMATHGoogle Scholar
  10. 10.
    O. V. Bulatov, “Analytical and numerical Riemann solutions of the Saint Venant equations for forward- and backward-facing step flows,” Comput. Math. Math. Phys. 54 (1), 158–171 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. G. Elizarova and D. A. Saburin, “Numerical modeling of liquid fluctuations in fuel tanks,” Math. Models Comput. Simul. 5 (5), 470–478 2013.CrossRefGoogle Scholar
  12. 12.
    T. G. Elizarova and D. A. Saburin, “The numerical simulation of Faraday waves on the basis of hydrodynamic equations in the shallow-water approximation,” Moscow Univ. Phys. Bull. 70 (1), 1–6 2015.CrossRefGoogle Scholar
  13. 13.
    A. A. Zlotnik, “On construction of quasi-gasdynamic systems of equations and the barotropic system with the potential body force,” Mat. Model. 24 (4), 65–79 2012.MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. A. Zlotnik, “Energy equalities and estimates for barotropic quasi-gasdynamic and quasi-hydrodynamic systems of equations,” Comput. Math. Math. Phys. 50 (2), 310–321 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them,” Comput. Math. Math. Phys. 48 (3), 445–472 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. A. Sukhomozgii and Yu. V. Sheretov, “Uniqueness of the solution of regularized Saint Venant equations in the linear approximation,” Vestn. Tver. Gos. Univ., Ser. Prikl. Mat., No. 24, 5–7 2012.Google Scholar
  17. 17.
    A. A. Sukhomozgii and Yu. V. Sheretov, “Testing a new algorithm for computing one-dimensional unsteady free surface flows,” Vestn. Tver. Gos. Univ., Ser. Prikl. Mat., No. 27, 47–64 2012.Google Scholar
  18. 18.
    T. G. Elizarova and O. V. Bulatov, Preprint No. 21, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2014).Google Scholar
  19. 19.
    T. G. Elizarova and M. A. Istomina, Preprint No. 65, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2014).Google Scholar
  20. 20.
    R. J. LeVeque, “Balancing source terms and flux gradients in high-resolution Godunov methods: The quasisteady wave propagation algorithm,” J. Comput. Phys. 146 (1), 346–365 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Y. Huang, N. Zhang, and Y. Pei, “Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography,” Eng. Appl. Comput. Fluid Mech. 7 (1), 40–54 2013.Google Scholar
  22. 22.
    A. A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force,” Comput. Math. Math. Phys. 56 (2), 303–319 2016.CrossRefGoogle Scholar
  23. 23.
    M. Ricchiuto, R. Abgrall, and H. Deconinck, “Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes,” J. Comput. Phys. 222, 287–331 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Birman and J. Falcovitz, “Application of the GRP scheme to open channel flow equations,” J. Comput. Phys. 222, 131–154 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    A. S. Petrosyan, Additional Topics in Hydrodynamics of Heavy Fluid with Free Surface, Ser. Mechanics, Control, Informatics (Inst. Kosm. Issled. Ross. Akad. Nauk, Moscow, 2010) [in Russian].Google Scholar
  26. 26.
    Xu Kun, “A well-balanced gas-kinetic scheme for the shallow-water equations with source terms,” J. Comput. Phys. 178, 533–562 2002MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    F. Marche, PhD Thesis (Universite de Bordeau 1, 2005); wwwmathu-bordeau1fr/marche/THESE/marchepdf.Google Scholar
  28. 28.
    G. F. Carrier and H. P. Greenspan, “Water waves of finite amplitude on a sloping beach,” J. Fluid Mech. 4, 97–109 1958.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    G. F. Carrier, T. T. Wu, and H. Yeh, “Tsunami run-up and draw-down on a plane beach,” J. Fluid Mech. 475, 79–99 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Benchmark Problem 1: Tsunami Runup onto a plane beach; http://isecnacseorg/workshop/2004_cornell/ bmark1html.Google Scholar
  31. 31.
    NOAA Center for Tsunami Research. Tsunami Runup onto a Complex Three-dimensional Beach. Monai Valley; http://nctrpmelnoaagov/benchmark/Laboratory/Laboratory_MonaiValley/indexhtmlGoogle Scholar
  32. 32.
    M. Ricchiuto, “An explicit residual based approach for shallow water flows,” J. Comput. Phys. 280, 306–344 2015.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations