Skip to main content
Log in

Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A complex mathematical model of aluminum casting and solidification in a variable electromagnetic field is constructed. The model is based on the solution of magnetohydrodynamic equations and the VOF method. Test results are presented for the model and the numerical algorithm proposed. The numerical results are compared with experimental data and computations of other authors and are found to be in good agreement. The model is used to simulate aluminum solidification under an electromagnetic field. The physical processes influencing ingot formation are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. N. Getselev, Continuous Casting in Electromagnetic Crystallizer (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  2. M. V. Pervukhin, A. V. Minakov, N. V. Sergeev, and M. U. Khatsauk, “Mathematic simulation of electromagnetic and thermal hydrodynamic processes in the ‘inductor–ingot’ system of an electromagnetic mould,” Magnetohydrodynamics 47 (1), 79–87 (2011).

    Google Scholar 

  3. A. V. Minakov, M. Yu. Khatsayuk, and M. V. Pervukhin, “Numerical simulation of free-surface dynamics and solidification in electromagnetic crystallizer,” Indukts. Nagrev 27 (1), 37–42 (2014).

    Google Scholar 

  4. M. Kirpo, PhD Thesis (University of Latvia, 2008).

    Google Scholar 

  5. O. Pesteanu and E. Baake, “Contribution to the simulation of free surface flows in electromagnetic field,” Proceedings of the 54th International Scientific Colloquium on Information Technology and Electrical Engineering: Devices and Systems, Materials and Technologies for the Future (Technische Universität Ilmenau, 2009), pp. 361–362.

    Google Scholar 

  6. S. Spitans, A. Jakovics, E. Baake, and B. Nacke, “Numerical modeling of free surface dynamics of conductive melt in the induction crucible furnace,” Magnetohydrodynamics 45 (4), 425–436 (2010).

    Google Scholar 

  7. E. Baake, A. Muhlbauer, A. Jakowitsch, and W. Andree, “Extension of the k–e model for the numerical simulation of the melt flow in induction crucible furnaces,” Metal. Mater. Trans. B 26, 529–536 (1995).

    Article  Google Scholar 

  8. J. O. Hinze, Turbulence (McGraw-Hill, New York, 1975).

    Google Scholar 

  9. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, 1980; Energoatomizdat, Moscow, 1984).

    MATH  Google Scholar 

  10. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Modeling of Vortical Intensification of the Heat Transfer in Tube Banks (Sudostroenie, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  11. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  12. F. R. Menter, “Two equation eddy viscosity turbulence models for engineering applications,” AIAA J. 32 (8), 1598–1605 (1994).

    Article  Google Scholar 

  13. F. R. Menter, “Review of the SST turbulence model experience from an industrial perspective,” Int. J. Comput. Fluid Dyn. 23, 20–35 (2009).

    Article  Google Scholar 

  14. C. W. Hirt, “Volume of fluid (VOF): Method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–226 (1981).

    Article  MATH  Google Scholar 

  15. A. V. Minakov, “Numerical algorithm for moving-boundary fluid dynamics problems and its testing,” Comput. Math. Math. Phys. 54 (10), 1560–1570 (2014).

    Article  MathSciNet  Google Scholar 

  16. J. U. Brackbill, D. B. Kothe, and C. A. Zemach, “Continuum method for modeling surface tension,” J. Comput. Phys. 100, 335–354 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, and V. Ya. Rudyak, “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity,” Sib. Zh. Ind. Mat. 13 (4), 3–14 (2010).

    MathSciNet  MATH  Google Scholar 

  18. F. F. Tsvetkov and B. A. Grigor’ev, Hear and Mass Exchange (Mosk. Energ. Inst., Moscow, 2005) [in Russian].

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; ButterworthHeinemann, Oxford, 1984).

    Google Scholar 

  20. V. Ya. Rudyak, A. V. Minakov, A. A. Gavrilov, and A. A. Dekterev, “Application of new numerical algorithm for solving the Navier–Stokes equations for modeling the work of a viscometer of the physical pendulum type,” Thermophys. Aeromech. 15, 333–345 (2008).

    Article  Google Scholar 

  21. B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation,” Comput. Math. Appl. Mech. Eng. 19, 59–98 (1979).

    Article  MATH  Google Scholar 

  22. C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J. 21 (11), 1525–1532 (1983).

    Article  MATH  Google Scholar 

  23. U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic, New York, 2001).

    MATH  Google Scholar 

  24. O. Ubbink, PhD Thesis (Imperial College of Science, Technology and Medicine, London, UK, 1997).

    Google Scholar 

  25. M. Hinatsu, “Two-phase flows for joint research,” Proceedings of SRI-TUHH Mini Workshop on Numerical Simulation of Two-Phase Flows (National Maritime Res. Inst., 2001).

    Google Scholar 

  26. K. B. Neilsen, PhD Thesis (Technical Univ. of Denmark, 2003).

    Google Scholar 

  27. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1970; Pergamon, Oxford, 1972).

    MATH  Google Scholar 

  28. C. Gau and R. Viskanta, “Melting and solidification of a pure metal from a vertical wall,” Trans. ASME: J. Heat Transfer 108, 171–174 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Minakov.

Additional information

Original Russian Text © A.V. Minakov, M.V. Pervukhin, D.V. Platonov, M.Yu. Khatsayuk, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 12, pp. 2094–2108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minakov, A.V., Pervukhin, M.V., Platonov, D.V. et al. Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics. Comput. Math. and Math. Phys. 55, 2066–2079 (2015). https://doi.org/10.1134/S096554251512009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251512009X

Keywords

Navigation