Skip to main content
Log in

Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Near-wall turbulence in a plane channel at high Reynolds numbers is studied by applying direct numerical simulation. A new numerical algorithm is proposed in which convective fluxes are explicitly approximated using the CABARET scheme and two grid elliptic equations are solved in order to satisfy the incompressibility condition. The equations are of high dimension and are solved by employing a fast direct method that can be efficiently parallelized. In contrast to most methods, including spectral ones, the CABARET scheme does not involve any tuning parameters. It has a compact stencil, which simplifies setting boundary conditions and improves the efficiency of parallelization in computations on multiprocessor computer systems. Numerical results are obtained in a wide range of Reynolds numbers and are compared with experimental data and numerical results of other authors. The error in the computed drag coefficient for turbulent flow is examined as a function of grid characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Moin and J. Kim, “Numerical investigation of turbulent channel flow,” J. Fluid Mech. 119, 341–377 (1982).

    Article  Google Scholar 

  2. J. Kim, P. Moin, and R. D. Moser, “Turbulence statistics in fully developed channel flow at low reynolds number,” J. Fluid Mech. 177, 133–166 (1987).

    Article  MATH  Google Scholar 

  3. C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, New York, 1984; Mir, Moscow, 1988).

    Book  MATH  Google Scholar 

  4. R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Reτ = 590,” Phys. Fluids 11 (4), 943–945 (1999).

    Article  MATH  Google Scholar 

  5. J. C. del’Alamo and J. Jiménez, “Spectra of very large anisotropic scales in turbulent channels,” Phys. Fluids 15, 41–44 (2003).

    Article  Google Scholar 

  6. J. C. del’Alamo, J. Jiménez, P. Zandonade, and R. D. Moser, “Scaling of the energy spectra of turbulent channels,” J. Fluid Mech. 500, 135–144 (2004).

    Article  MATH  Google Scholar 

  7. S. Hoyas and J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,” Phys. Fluids 18, 011702 (2006).

    Article  Google Scholar 

  8. H. Abe, H. Kawamura, and Y. Matsuo, “Direct numerical simulation of fully developed turbulent channel flow with respect to the Reynolds number dependence,” J. Fluids Eng. 123, 382–393 (2001).

    Article  Google Scholar 

  9. D. Keyes, A. Ecer, N. Satofuka, P. Fox, and J. Periaux, Parallel Computational Fluid Dynamics: Towards Teraflops, Optimization, and Novel Formulations (North-Holland, Amsterdam, 2000).

    Google Scholar 

  10. P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence research,” Annu. Rev. Fluid. Mech. 30, 539–578 (1998).

    Article  MathSciNet  Google Scholar 

  11. J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New York, 2001).

    MATH  Google Scholar 

  12. T. A. Zang, S. E. Krist, and M. Y. Hussaini, “Resolution requirements for numerical simulation of transition,” J. Sci. Comput. 4 (2), 197–217 (1989).

    Article  Google Scholar 

  13. M. Uhlmann, “The need for de-aliasing in a Chebyshev pseudo-spectral method,” PIK Rep. 60, 1–23 (2000).

    MATH  MathSciNet  Google Scholar 

  14. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer, Berlin, 2007).

    Google Scholar 

  15. O. S. Sorokovikova, “On nonlinear instability and advantages of fully conservative convective flux approximation in gas dynamic problems,” Mat. Model. 5 (10), 106–113 (1993).

    MATH  MathSciNet  Google Scholar 

  16. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  17. V. M. Goloviznin, S. A. Karabasov, I. A. Korotkin, and O. S. Sorokovikova, “Supergrid-scale modeling of homogeneous isotropic turbulence in oneand two-dimensional cases,” in Fundamental Problems in Modeling of Turbulent Flows and Two-Phase Flows (Akademizdat, Moscow, 2010), Vol. 2, pp. 60–137 [in Russian].

    Google Scholar 

  18. V. M. Goloviznin, V. Yu. Glotov, A. V. Danilin, I. A. Korotkin, and S. A. Karabasov, “CABARET-based modeling of twoand three-dimensional incompressible turbulent flows,” in Fundamental Problems in Modeling of Turbulent Flows and Two-Phase Flows (Komtekhprint, Moscow, 2012), Vol. 3, pp. 113–185 [in Russian].

    Google Scholar 

  19. V. M. Goloviznin, S. A. Karabasov, I. A. Korotkin, and S. A. Finogenov, “New parameter-free method for direct numerical simulation of thermal convective flows in twoand three-dimensional closed domains,” in Fundamental Problems in Modeling of Turbulent Flows and Two-Phase Flows (Komtekhprint, Moscow, 2012), Vol. 3, pp. 186–242 [in Russian].

    Google Scholar 

  20. V. M. Goloviznin and V. Yu. Glotov, “CABARET-based modeling of homogeneous isotropic turbulence,” Abstract of Papers of Tikhonov Scientific Conference (MAKS, Ìoscow, 2013), p. 84.

    Google Scholar 

  21. V. Yu. Glotov and V. M. Goloviznin, “CABARET scheme for incompressible fluid in terms of velocity–pressure variables,” Proceedings of the 53th MIPT Scientific Conference on Modern Problems in Fundamental and Applied Sciences, Part VIII: Problems in Modern Physics (Mosk. Fiz.-Tekh. Inst., Moscow, 2010), pp. 119–121 [in Russian].

    Google Scholar 

  22. V. Yu. Glotov, Preprint No. IBRAE-2011-03, IBRAE RAN (Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 2011).

    Google Scholar 

  23. V. Yu. Glotov, “CABARET scheme for incompressible fluids,” in Proceedings of the 14th International Conference-School for Young Researchers on Modern Problems in Mathematical Modeling (Yuzhn. Fed. Univ., Rostovon-Don, 2011), pp. 96–101.

    Google Scholar 

  24. V. Yu. Glotov, Preprint No. IBRAE-2013-03, IBRAE RAN (Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 2013).

    Google Scholar 

  25. V. Yu. Glotov and V. M. Goloviznin, “CABARET scheme in velocity–pressure formulation for two-dimensional incompressible fluids,” Comput. Math. Math. Phys. 53 (6), 721–735 (2013).

    Article  MathSciNet  Google Scholar 

  26. V. M. Goloviznin, V. Yu. Glotov, A. P. Markesteijn, and S. A. Karabasov, “Computational modeling of multiscale problems of fluctuating hydrodynamics,” Supercomputer Technologies in Mathematical Modeling: Abstracts of Papers (Severo-Vost. Fed. Univ., Yakutsk, 2013), p. 29.

    Google Scholar 

  27. V. Yu. Glotov, V. M. Goloviznin, S. A. Karabasov, and A. P. Markeshtein, “Mathematical modeling of fluctuating hydrodynamic problems by applying next-generation algorithms,” Abstracts of Papers of the 11th International Interdisciplinary Seminar LPpM3-XI (Budva, 2013), p. 44.

    Google Scholar 

  28. V. Yu. Glotov and V. M. Goloviznin, “Cabaret scheme for two-dimensional incompressible fluid in terms of the stream function–vorticity variables,” Math. Model. Comput. Simul. 4 (2), 144–154 (2012).

    Article  MathSciNet  Google Scholar 

  29. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).

    Google Scholar 

  30. Yu. A. Kuznetsov, “Numerical methods in a subspace,” Vychisl. Protsessy Sist. 2, 265–350 (1985).

    MATH  Google Scholar 

  31. S. A. Finogenov and Yu. A. Kuznetsov, “Two-stage fictitious components method for solving the Dirichlet boundary value problem,” Sov. J. Numer. Anal. Math. Model. 3 (4), 301–323 (1988).

    MATH  MathSciNet  Google Scholar 

  32. E. N. Akimova and D. V. Belousov, “Parallel algorithms for solving SLAE with block tridiagonal matrices on multiprocessor computers,” Vestn. Ufim. Gos. Aviats. Tekh. Univ 15 (5), 87–93 (2011).

    Google Scholar 

  33. M. P. Schultz and K. A. Flack, “Reynolds-number scaling of turbulent channel flow,” Phys. Fluids 25, 025104 (2013).

    Article  Google Scholar 

  34. V. C. Patel and M. R. Head, “Some observations on skin friction and velocity profiles in fully developed pipe and channel flow,” J. Fluid Mech. 38, 181–201 (1969).

    Article  Google Scholar 

  35. R. B. Dean, “Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow,” Trans. ASME I: J. Fluids Eng. 100 (2), 215–223 (1978).

    Google Scholar 

  36. E.-S. Zanoun, H. Nagib, and F. Durst, “Refined C f relation for turbulent channels and consequences for highre experiments,” Fluid Dyn. 41, 021405 (2009).

    Article  Google Scholar 

  37. F. Laadhari, “Reynolds number effect on the dissipation function in wall-bounded flows,” Phys. Fluids 19 (3), 038101 (2007).

    Article  Google Scholar 

  38. T. Tsukahara, Y. Seki, H. Kawamura, and D. Tochio, “DNS of turbulent channel flow at very low Reynolds number,” Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena (Williamsburg, VA, USA, 2005), pp. 935–940.

    Google Scholar 

  39. K. Iwamoto, Y. Suzuki, and N. Kasagi, “Reynolds number effect on wall turbulence: Toward effective feedback control,” Int. J. Heat Fluid Flow 23, 678–689 (2002).

    Article  Google Scholar 

  40. M. Tanahashi, S.-J. Kangand, T. Miyamoto, S. Shiokawa, and T. Miyauchi, “Scaling law of fine scale eddies in turbulent channel flows up to Reτ = 800,” Int. J. Heat Fluid Flow 25, 331–340 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Asfandiyarov.

Additional information

Original Russian Text © D.G. Asfandiyarov, V.M. Goloviznin, S.A. Finogenov, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 9, pp. 1545–1558.

In blessed memory of A.P. Favorskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfandiyarov, D.G., Goloviznin, V.M. & Finogenov, S.A. Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers. Comput. Math. and Math. Phys. 55, 1515–1526 (2015). https://doi.org/10.1134/S096554251509002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251509002X

Keywords

Navigation