Skip to main content
Log in

Numerical approach for solving neutral differential equation with deviating argument

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, numerical solution of a neutral differential equation with deviating argument by means of the Sinc scheme and fixed point theorem is considered. Properties of the DE-Sinc and SE-Sinc quadratures are utilized to reduce the computation of the neutral differential equations to an iterative technique. Then convergence of this technique is discussed by preparing a theorem. To guarantee the analytical results and show the efficiency and accuracy of the present method, some examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to Theory of Functional-Differential Equations (Nauka, Moscow, 1990).

  2. J. Banas, “Applications of measures of noncompactness to various problems,” Zesz. Nauk. Polit. Rzeszow., Mat. Fiz. z. 5, No. 34 (1987).

  3. C. Corduneanu, Integral Equations and Applications (Cambridge Univ. Press, Cambridge, 1991).

  4. K. Deimling, Nonlinear Functional Analysis (Springer-Verlag, Berlin, 1985).

  5. R. D. Driver, Ordinary and Delay Differential Equations (Springer-Verlag, Berlin, 1977).

  6. J. Hale and S. M. Veiduyn Lunel, Introduction to Functional Differential Equations (Springer-Verlag, New York, 1993).

  7. G. A. Kamenski, “On the general theory of equations with deviating argument,” Dokl. Akad. Nauk SSSR 120, 697–700 (1958).

    MathSciNet  Google Scholar 

  8. V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations (Kluwer Academic, Dordrecht, 1999).

  9. Y. Kuong, Delay Differential Equations with Applications in Population Dynamics (Academic, Boston, 1993)

  10. M. Zima, Positive Operators in Banach Spaces and Their Applications (Wyd. Uniw. Rzeszowskiego, Rzeszow, 2005)

  11. J. Banas and I. J. Cabrerab, “On solutions of a neutral differential equation with deviating argument,” Math. Comput. Model. 44, 1080–1088 (2006).

    Article  MATH  Google Scholar 

  12. K. Maleknejad and E. Najafi, “Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization,” Commun. Nonlinear Sci. Numer. Simul. 16 (1), 93–100 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Springer, New York, 2007).

  14. K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997).

  15. A. H. Borzabadi and O. S. Fard, “Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind,” J. Comput. Appl. Math. 232, 449–454 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. T. Kelley, “Approximation of solutions of some quadratic integral equations in transport theory,” J. Integral Equations 4, 221–237 (1982).

    MATH  MathSciNet  Google Scholar 

  17. R. Kress, Linear Integral Equations (Springer, Berlin, 1989).

  18. A. Sommariva, “A fast Nyström–Broyden solver by Chebyshev compression,” Numer. Algorithms 38, 47–60 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. 1: Fixed Point Theorems (Springer-Verlag, Berlin, 1986).

  20. K. Maleknejad and K. Nedaiasl, “Application of sinc-collocation method for solving a class of nonlinear Fredholm integral equations,” Comput. Math. Appl. 62 (8), 3292–3303 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Brutman, “An application of the generalized alternating polynomials to the numerical solution of Fredholm integral equations,” Numer. Algorithms 5, 437–442 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Petryshyn, “Projection methods in nonlinear numerical functional analysis,” J. Math. Mech. 17, 353–372 (1967).

    MATH  MathSciNet  Google Scholar 

  23. H. R. Marzban, H. R. Tabrizidooz, and M. Razzaghi, “A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations,” Commun Nonlinear Sci. Numer Simul. 16 (3), 1186–1194 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Maleknejad and M. Nosrati Sahlan, “The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets,” Int. J. Comput. Math. 87 (7), 1602–1616 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Q. Han, “Extrapolation of a discrete collocation-type method of Hammerstein equations,” J. Comput. Appl. Math. 61, 73–86 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Q. Han and L. Zhang, “Asymptotic error expansion of a collocation-type method for Hammerstein equations,” Appl. Math. Comput. 72, 1–19 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Kaneko, R. D. Noren, and P. A. Padilla, “Superconvergence of the iterated collocation methods for Hammerstein equations,” J. Comput. Appl. Math. 80, 335–349 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Maleknejad, H. Almasieh, and M. Roodaki, “Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations,” Commun. Nonlinear Sci. Numer. Simul. 15, 3293–3298 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Kumar and l. Sloan, “A new collocation-type method for Hammerstein equations,” Math. Comput. 48, 585–593 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  30. K. Maleknejad, M. Karami, and M. Rabbani, “Using the Petrov–Galerkin elements for solving Hammerstein integral equations,” Appl. Math. Comput. 172 (2), 831–845 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Maleknejad and M. Karami, “Numerical solution of nonlinear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method,” Appl. Math. Comput. 168, 102–110 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Petryshyn, “Projection methods in nonlinear numerical functional analysis,” J. Math. Mech. 17, 353–372 (1967).

    MATH  MathSciNet  Google Scholar 

  33. C. Allouch, P. Sablonniere, and D. Sbibih, “Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants,” Numer. Algorithms 56 (3), 437–453 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Micula and S. Micula, Handbook of Splines (Kluwer Academic, Dordrecht, 1999).

  35. F. De. Hoog and R. Weiss, “Asymptotic expansions for product integration” Math. Comput. 27, 295–306 (1973).

    Article  MATH  Google Scholar 

  36. S. Abbasbandy and E. Shivanian, “A new analytical technique to solve Fredholm integral equations,” Numer. Algorithms 56 (1), 27–43 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  37. S. Abbasbandy, “Numerical solutions of the integral equations: Homotopy perturbation method and Adomian’s decomposition method,” Appl. Math. Comput. 173, 493–500 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  38. E. Babolian, J. Biazar, and A. R. Vahidi, “The decomposition method applied to systems of Fredholm integral equations of the second kind,” Appl. Math. Comput. 148, 443–452 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  39. A. H. Borzabadi, A. V. Kamyad, and H. H. Mehne, “A different approach for solving the nonlinear Fredholm integral equations of the second kind,” Appl. Math. Comput. 173, 724–735 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  40. C. T. Kelley, “A fast two-grid method for matrix H-equations,” Trans. Theory Stat. Phys. 18, 185–204 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  41. K. Atkinson, “Iterative variants of the Nyström method for the numerical solution of integral equations,” Numer. Math. 22, 17–31 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  42. K. Atkinson, “The numerical evaluation of fixed points for completely continuous operators,” SIAM J. Numer. Anal. 10, 799–807 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Q. Han, “Asymptotic expansion for the Nyström method for nonlinear Fredholm integral equations of the second kind,” BIT Numer. Math. 34, 254–262 (1994).

    Article  MATH  Google Scholar 

  44. G. Mastroiani and G. Monegato, “Some new applications of truncated Gauss–Laguerre quadrature formulas,” Numer. Algorithms 49, 283–297 (2008).

    Article  MathSciNet  Google Scholar 

  45. O. Hübner, “The Newton method for solving the Theodorsen integral equation,” J. Comput. Appl. Math. 14, 19–30 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  46. C. T. Kelley and J. Northrup, “A pointwise quasi-Newton method for integral equations,” SIAM J. Numer. Anal. 25, 1138–1155 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  47. C. T. Kelley and E. Sachs, “Broyden’s method for approximate solution of nonlinear integral equations,” J. Integral Equations 9, 25–43 (1985).

    MATH  MathSciNet  Google Scholar 

  48. M. Shimasaki and T. Kiyono, “Numerical solution of integral equations by Chebyshev series,” Numer. Math. 21, 373–380 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  49. E. Babolian, S. Abbasbandy, and F. Fattahzadeh, “A numerical method for solving a class of functional and two dimensional integral equations,” Appl. Math. Comput. 198, 35–43 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  50. S. Abbasbandy, “Application of He’s homotopy perturbation method to functional integral equations,” Chaos Solitons Fractals 31, 1243–1247 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  51. M. T. Rashed, “Numerical solution of functional differential, integral and integro-differential equations,” Appl. Math. Comput. 156, 485–492 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  52. M. T. Rashed, “Numerical solution of functional integral equations,” Appl. Math. Comput. 156, 507–512 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  53. F. Stenger, Numerical Methods Based on Sine and Analytic Functions (Springer-Verlag, New York, 1993).

  54. J. Lund and K. Bowers, Sine Methods for Quadrature and Differential Equations (SIAM, Philadelphia, 1992).

  55. X. Wu and Kong W. Li, “A sinc-collocation method with boundary treatment for two-dimensional elliptic boundary value problems,” J. Comput. Appl. Math. 196 (2), 58–69 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  56. M. S. Sababheh and A. M. N. Al-Khaled, “Some convergence results on sine interpolation,” J. Inequal. Pure Appl. Math. 4, 32–48 (2003).

    MathSciNet  Google Scholar 

  57. H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publ. RIMS Kyoto Univ. 9, 721–741 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Mori, “Quadrature formulas obtained by variable transformation and the DE-rule,” J. Comput. Appl. Math. 12–13, 119–130 (1985).

    Google Scholar 

  59. M. Mori, “Developments in the double exponential formulas for numerical integration,” Proceedings of the International Congress of Mathematicians, August 21–29, 1990, Kyoto, Ed. by I. Satake (Springer, Berlin, 1991), pp. 1585–1594.

  60. J. Banas and K. Goebel, “Measures of noncompactness in Banach space},” in Lecture Notes in Pure and Applied Mathematics (Dekker, New York, 1980)}, vol. 60

  61. J. Banas, “Measures of noncompactness in the space of continuous tempered functions,” Demonstratio Math. 14, 127–133 (1981).

    MATH  MathSciNet  Google Scholar 

  62. K. Tanaka, M. Sugihara, and K. Murota, “Function classes for successful DE-sinc approximations,” Math. Comput. 78, 1553–1571 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  63. K. Tanaka, M. Sugihara, K. Murota, and M. Mori, “Function classes for double exponential integration formulas,” Numer. Math. 111, 631–655 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mesgarani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesgarani, H., Mollapourasl, R. & Ostadi, A. Numerical approach for solving neutral differential equation with deviating argument. Comput. Math. and Math. Phys. 55, 969–982 (2015). https://doi.org/10.1134/S0965542515060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515060093

Keywords

Navigation