Skip to main content
Log in

Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The reflection of a plane sound wave incident normally on the flat boundary of a layered heterogeneous medium is considered. The heterogeneous medium consists of periodically alternating layers of elastic and viscoelastic isotropic materials. All the layers are assumed to be parallel or perpendicular to the wavefront and each layer is much thinner than the sound wavelength. The problem is studied using a homogenized model of the layered heterogeneous medium. Specifically, the complex amplitudes of the reflected and transmitted waves are determined as functions of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bakhvalov and G. P. Panasenko, Homogenization: Averaging Processes in Periodic Media (Nauka, Moscow, 1984; Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  2. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory (Springer-Verlag, Berlin, 1980; Mir, Moscow, 1984).

    Google Scholar 

  3. O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization (Mosk. Gos. Univ., Moscow, 1990; North-Holland, Amsterdam, 1992).

    MATH  Google Scholar 

  4. V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators and Integral Functionals (Nauka, Moscow, 1993; Springer-Verlag, Berlin, 1994).

    MATH  Google Scholar 

  5. D. I. Bardzokas and A. I. Zobnin, Mathematical Modeling of Physical Processes in Composite Materials with a Periodic Structure (Editorial URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  6. A. L. Pyatnitskii, G. A. Chechkin, and A. S. Shamaev, Homogenization: Methods and Applications (Tamara Rozhkovskaya, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  7. J. Sanchez-Hubert, “Asymptotic study of the macroscopic behavior of a solid-liquid mixture,” Math. Methods Appl. Sci. 2, 158–190 (1980).

    Article  MathSciNet  Google Scholar 

  8. R. P. Gilbert and A. Mikelic, “Homogenizing the acoustic properties of the seabed: Part I,” TINonlinear Anal. 40 (1), 185–212 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. S. Shamaev and V. V. Shumilova, “Averaging the acoustics equations for a viscoelastic material with channels filled with a viscous compressible fluid,” Fluid Dyn. 46 (2), 250–261 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Shamaev and V. V. Shumilova, “Homogenization of the acoustic equations for a porous long-memory vis-coelastic material filled with a viscous fluid,” Differ. Equations 48 (8), 1161–1173 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. S. Shamaev and V. V. Shumilova, “On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials,” Sib. Zh. Ind. Mat. 15 (4), 124–134 (2012).

    Google Scholar 

  12. A. S. Shamaev and V. V. Shumilova, “On the spectrum of one-dimensional oscillations in a medium consisting of elastic and Kelvin–Voigt viscoelastic layers,” Vychisl. Mat. Mat. Fiz. 53 (2), 282–290 (2013).

    MATH  Google Scholar 

  13. L. M. Brekhovskikh and O. I. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989; Springer-Verlag, Berlin, 1990).

    Book  Google Scholar 

  14. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979; Nauka, Moscow, 1982).

    Google Scholar 

  15. B. E. Pobedrya, Mechanics of Composite Materials (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  16. S. M. Rytov, “Acoustic properties of a thinly laminated medium,” Akust. Zh. 2 (1), 71–83 (1956).

    MathSciNet  Google Scholar 

  17. L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960; Nauka, Moscow, 1973).

    Google Scholar 

  18. A. M. Shvidanenko, “Wave propagation in viscoelastic layered media,” Akust. Zh. 19 (5), 791–794 (1973).

    Google Scholar 

  19. L. A. Molotkov, Matrix Method in the Theory of Wave Propagation in Layered Elastic and Liquid Media (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  20. B. L. N. Kennet, Seismic Wave Propagation in Layered Media (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  21. K. E. Gilbert, “A propagator matrix method for periodically layered media,” J. Acoust. Soc. Am. 73 (1), 137–142 (1983).

    Article  Google Scholar 

  22. A. Stovas and B. Arntsen, “Vertical propagation of low-frequency waves in finely layered media,” Geophysics 71 (3), T87–T94 (2006).

    Article  Google Scholar 

  23. A. A. Il’yushin and B. E. Pobedrya, Foundations of the Mathematical Thermoviscoelasticity Theory (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumilova.

Additional information

Original Russian Text © V.V. Shumilova, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 7, pp. 1208–1220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumilova, V.V. Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers. Comput. Math. and Math. Phys. 55, 1188–1199 (2015). https://doi.org/10.1134/S0965542515040144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515040144

Keywords

Navigation