Skip to main content
Log in

Analysis of regimes of magnetogasdynamic interaction between a current layer and an argon flow

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A nonstationary three-dimensional magnetogasdynamics (MGD) model is used to study the dynamics of a current layer interacting with a transverse magnetic field in a supersonic argon flow through a channel of constant cross section. The MGD interaction regimes and the features of the current layer formation for various external resistances and channel widths are analyzed as based on numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Vasil’ev and D. A. Nesterov, “The spatial structure of a current layer in an MGD channel,” High Temp. 44(4), 497–506 (2006).

    Article  Google Scholar 

  2. E. N. Vasiliev, V. A. Derevyanko, and D. A. Nesterov, “Numerical modeling of magnetogasdynamic processes in the pulsed setup duct,” Thermophys. Aeromech. 13(3), 369–379 (2006).

    Article  Google Scholar 

  3. E. N. Vasil’ev and D. A. Nesterov, “Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow,” Comput. Math. Math. Phys. 50(11), 1851–1858 (2010).

    Article  MathSciNet  Google Scholar 

  4. R. S. Devoto, “Transport coefficients of partially ionized argon,” Phys. Fluids 10(2), 354–364 (1967).

    Article  Google Scholar 

  5. S. S. Katsnel’son and G. A. Koval’skaya, Thermophysical and Optical Properties of Argon Plasma (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  6. Yu. V. Moskvin, “Emissivity of certain gases at high temperatures of 6000-(2000)-12000 K,” High Temp. 6(1), 1–9 (1968).

    Google Scholar 

  7. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum, New York, 1988; Mir, Moscow, 1991).

    Book  MATH  Google Scholar 

  8. E. N. Vasil’ev and D. A. Nesterov, “Computational model of radiation convective heat exchange in inhomogeneous magnetogasdynamic flows,” Vychisl. Tekhnol. 10(6), 13–28 (2005).

    MATH  Google Scholar 

  9. E. N. Vasil’ev and D. A. Nesterov, “Development of the Rayleigh-Taylor instability in inhomogeneous magnetic gas-dynamic flows,” Comput. Math. Math. Phys. 46(5), 863–872 (2006).

    Article  MathSciNet  Google Scholar 

  10. E. N. Vasil’ev, V. A. Derevyanko, and V. S. Slavin, “A stabilized current layer,” High Temp. 24(5), 631–637 (1986).

    Google Scholar 

  11. E. N. Vasil’ev, V. V. Ovchinnikov, and V. S. Slavin, “State diagram of a stabilized current layer in an MGD-generator channel,” Dokl. Akad. Nauk SSSR 290(6), 1305–1309 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Vasil’ev.

Additional information

Original Russian Text © E.N. Vasil’ev, D.A. Nesterov, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 3, pp. 502–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, E.N., Nesterov, D.A. Analysis of regimes of magnetogasdynamic interaction between a current layer and an argon flow. Comput. Math. and Math. Phys. 55, 500–508 (2015). https://doi.org/10.1134/S0965542515030197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515030197

Keywords

Navigation