Skip to main content
Log in

Numerical simulation of gas flows through a cubic pack of nonspherical particles

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical method is proposed for computing flow variables in an enclosed domain with arbitrarily shaped particles. A technique for achieving an optimal load distribution in parallel computations is described. The gas flow through a cubic pack of nonspherical particles of given shape is computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Mujeebu, M. Z. Abdullah, M. Z. Abu Bakar, A. A. Mohamad, M. K. Abdullah, “Applications of porous media combustion technology: A review,” Appl. Energy 86(9), 1365–1375 (2009).

    Article  Google Scholar 

  2. Y.-S. Chen, S.-S. Hsiau, S.-C. Lai, Y.-P. Chyou, H.-Y. Li, and C.-J. Hsu, “Filtration of dust particulates with a moving granular bed filter,” J. Hazardous Materials 171(1–3), 987–994 (2009).

    Article  Google Scholar 

  3. L. Li and W. Ma, “Experimental study on the effective particle diameter of a packed bed with non-spherical particles,” Trans. Porous Media 89(1), 35–48 (2011).

    Article  Google Scholar 

  4. M. Jamialahmadi, H. Müller-Steinhagen, and M. R. Izadpanah, “Pressure drop, gas hold-up and heat transfer during single and two-phase flow through porous media,” Int. J. Heat Fluid Flow 26(1), 156–172 (2005).

    Article  Google Scholar 

  5. A. Guardo, M. Coussirat, M. A. Larrayoz, F. Recasens, E. Egusquiza, “Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds,” Chem. Eng. Sci. 60(6), 1733–1742 (2005).

    Article  Google Scholar 

  6. M. A. Mujeebu, M. Z. Abdullah, A. A. Mohamad, and M. Z. Abu Bakar, “Trends in modeling of porous media combustion,” Progress Energy Combustion Sci. 36(6), 627–650 (2010).

    Article  Google Scholar 

  7. G. Brenner, K. Pickenacker, O. Pickenacker, D. Trimis, K. Wawrzinek, and T. Weber, “Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media,” Combust. Flame 123(1–2), 201–213 (2000).

    Article  Google Scholar 

  8. M. Sahraoui and M. Kaviany, “Direct simulation versus volume-averaged treatment of adiabatic, premixed flame in a porous medium,” Int. J. Heat Mass Transfer 37(18), 2817–2834 (1994).

    Article  MATH  Google Scholar 

  9. R. Caulkin, X. Jia, M. Fairweather, and R. A. Williams, “Lattice approaches to packed column simulations,” Particuology 6(6), 404–411 (2008).

    Article  Google Scholar 

  10. A. G. Dixon, M. Nijemeisland, and E. H. Stitt, “Packed tubular reactor modeling and catalyst design using computational fluid dynamics,” Adv. Chem. Eng. 31, 307–389 (2006).

    Article  Google Scholar 

  11. H. Freund, T. Zeiser, F. Huber, E. Klemm, G. Brenner, F. Durst, G. Emig, “Numerical Simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation,” Chem. Eng. Sci. 58(3), 903–910 (2003).

    Article  Google Scholar 

  12. J. L. Steger and J. A. Benek, “On the use of composite grid schemes in computational aerodynamics,” Comput. Meth. Appl. Mech. Eng 64, 301–320 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  13. H. S. Tang, S. C. Jones, and F. Sotiropoulos, “An overset-grid method for 3D unsteady incompressible flows,” J. Comput. Phys. 191(2), 567–600 (2003).

    Article  MATH  Google Scholar 

  14. E. Ahusborde and S. Glockner, “An implicit method for the Navier-Stokes equations on overlapping block-structured grids,” Int. J. Numer. Meth. Fluids 62(7), 784–801 (2010).

    MATH  MathSciNet  Google Scholar 

  15. L. Ge, S. C. Jones, F. Sotiropoulos, T. M. Healy, A. P. Yoganathan, “Numerical simulation of flow in mechanical heart valves: Grid resolution and the assumption of flow symmetry,” J. Biomech. Eng. 125(5), 709–718 (2003).

    Article  Google Scholar 

  16. Y. Li, K. -J. Paik, T. Xing, and P. M. Carrica, “Dynamic overset CFD simulations of wind turbine aerodynamics,” Renewable Energy 37(1), 285–298 (2012).

    Article  Google Scholar 

  17. A. T. Fedorchenko, “Numerical investigation of unsteady subsonic viscous gas flows in a plane channel with a sudden expansion,” Fluid Dyn. 23(4), 509–517 (1988).

    Article  Google Scholar 

  18. A. M. Lipanov, “Method for the numerical solution of fluid dynamics equations in multiply connected domains (first report),” Mat. Model. 18(12), 3–18 (2006).

    MATH  MathSciNet  Google Scholar 

  19. I. G. Rusyak, M. M. Gorokhov, and S. M. Kolosov, “Formulation of a three-dimensional incompressible flow problem in curvilinear coordinates,” Intellekt. Sist. Proizvodstve, No. 1, 68–93 (2006).

    Google Scholar 

  20. V. M. Verzhbitskii, Fundamentals of Numerical Methods (Vysshaya Shkola, Moscow, 2002) [in Russian].

    Google Scholar 

  21. D. Li and X. Sun, Nonlinear Integer Programming (Springer, New-York, 2006).

    MATH  Google Scholar 

  22. A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Tech. 184(3), 361–365 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Semakin.

Additional information

Original Russian Text © A.N. Semakin, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 3, pp. 488–501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semakin, A.N. Numerical simulation of gas flows through a cubic pack of nonspherical particles. Comput. Math. and Math. Phys. 55, 487–499 (2015). https://doi.org/10.1134/S096554251503015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251503015X

Keywords

Navigation