Skip to main content
Log in

Comparison of scalar and vector FEM forms in the case of an elliptic cylinder

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An invariant vector approximation of unknown quantities is proposed and implemented to construct the stiffness matrix of a quadrilateral curved finite element in the form of a fragment of the mid-surface of an elliptic cylinder with 18 degrees of freedom per node. Numerical examples show that the vector approximation has significant advantages over the scalar one as applied to arbitrary shells with considerable mid-surface curvature gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Novozhilov, K. F. Chernykh, and E. I. Mikhailovskii, Linear Theory of Thin Shells (Politekhnika, Leningrad, 1991) [in Russian].

    Google Scholar 

  2. K. Z. Galimov and V. N. Paimushin, Theory of Shells of Complex Geometry (Kazan. Gos. Univ., Kazan, 1985) [in Russian].

    Google Scholar 

  3. E. I. Grigolyuk and V. V. Kabanov, Stability of Shells (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  4. E. N. Grigolyuk and E. A. Lopanitsyn, Finite Deflections, Stability, and Supercritical Behavior of Thin Hollow Shells (Mosk. Gos. Tekh. Univ. “MAMI,” Moscow, 2004) [in Russian].

    Google Scholar 

  5. V. L. Yakushev, Nonlinear Deformations and Stability of Thin Shells (Nauka, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  6. V. G. Bazhenov, V. K. Lomunov, S. L. Osetrov, and E. V. Pavlenkova, “Experimental and computational method of studying large elastoplastic deformations of cylindrical shells in tension to rupture and construction of strain diagrams for an inhomogeneous stress-strain state,” Prikl. Mekh. Tekh. Fiz., No. 1, 116–124 (2013).

    Google Scholar 

  7. A. I. Golovanov, O. N. Tyuleneva, and A. F. Shigabutdinov, Finite Element Method in Statics and Dynamics of Thin-Walled Structures (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  8. N. M. Yakupov and M. N. Serazutdinov, Computation of Elastic Thin-Walled Structures of Complex Geometry (Inst. Mekh. Mashinostr. Kazan. Nauchn. Tsentr Ross. Akad. Nauk, Kazan, 1993) [in Russian].

    Google Scholar 

  9. V. A. Postnov and I. Ya. Kharkhurim, Finite Element Method in Computation of Ship Structures (Sudostroenie, Leningrad, 1974) [in Russian].

    Google Scholar 

  10. K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, N.J., 2007; Fizmatlit, Moscow, 2010).

    Google Scholar 

  11. A. P. Nikolaev, Yu. V. Klochkov, A. P. Kiselev, and N. A. Gureeva, Vector Interpolation of Displacement Fields in Computing Shells (Volgograd. Gos. Agrar. Univ., Volgograd, 2012) [in Russian].

    Google Scholar 

  12. L. I. Sedov, A Course in Continuum Mechanics (Wolters-Noordhoff, Groningen, 1971; Nauka, Moscow, 1976), Vol. 1.

    MATH  Google Scholar 

  13. Yu. V. Klochkov, A. P. Nikolaev, and T. A. Kiseleva, “Comparison of stresses produced by scalar and vector FEM interpolations in jointed shells consisting of different materials,” Stroit. Mekh. Raschet Sooruzh., No. 5(250), 7–75 (2013).

    Google Scholar 

  14. N. M. Belyaev, Mechanics of Materials (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Klochkov.

Additional information

Original Russian Text © T.A. Kiseleva, Yu.V. Klochkov, A.P. Nikolaev, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 3, pp. 418–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, T.A., Klochkov, Y.V. & Nikolaev, A.P. Comparison of scalar and vector FEM forms in the case of an elliptic cylinder. Comput. Math. and Math. Phys. 55, 422–431 (2015). https://doi.org/10.1134/S0965542515030094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515030094

Keywords

Navigation