Skip to main content
Log in

Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Wave propagation in fractured rock in the course of seismic exploration is studied. The grid-characteristic method on hexahedral meshes is extended to the case of an elastic medium with empty and fluid-saturated cracks. The crack effect on wave propagation in the medium is taken into account by introducing cracks at the stage of grid generation with boundary conditions and conditions on the crack edges specified in explicit form. This method is used to obtain wave patterns near an extended inclined crack. The problem of numerically computing the seismic effect produced by a cluster of vertical and subvertical cracks is given in a complete three-dimensional formulation. The structure of the resulting pattern and the influence exerted by the crack-filling substance on the signal recorded on the surface are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Massau, Memoire sur l’integration graphique aux derives partielles (Meyer-van Loo, Paris, 1899).

    Google Scholar 

  2. A. I. Zhukov, “Application of the method of characteristics to the numerical solution of one-dimensional problems in gas dynamics,” Tr. Mat. Inst. im. V.A. Steklova Akad. Nauk SSSR 58, 4–150 (1960).

    Google Scholar 

  3. D. S. Butler, “The numerical solution of hyperbolic systems of partial differential equations of three independent variables,” Proc. R. Soc London A 255(1281), 232–241 (1960).

    Article  MATH  Google Scholar 

  4. K. M. Magomedov, “The method of characteristics for the numerical calculation of the space flow of a gas,” USSR Comput. Math. Math. Phys. 6(2), 162–178 (1966).

    Article  MathSciNet  Google Scholar 

  5. K. M. Magomedov and A. S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic ratios,” USSR Comput. Math. Math. Phys. 9(2), 158–176 (1969).

    Article  Google Scholar 

  6. V. N. Kukudzhanov, “Numerical solution of multidimensional wave propagation in solids,” Reports on Applied Mathematics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1976), Vol. 6, pp. 11–37.

    Google Scholar 

  7. Yu. D. Shevelev, Three-Dimensional Problems in Computational Aerodynamics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  8. A. S. Kholodov, “Numerical methods for solving hyperbolic equations and systems of equations,” in Encyclopedia of Low-Temperature Plasmas (Series B), Vol. VII-1, Part 2: Mathematical Modeling of Low-Temperature Plasma (Yanus-K, Moscow, 2008), pp. 141–174 [in Russian].

    Google Scholar 

  9. K. O. Friedrichs, “Symmetric hyperbolic linear differential equations,” Commun. Pure Appl. Math. 7(2), 345–392 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations,” USSR Comput. Math. Math. Phys. 18(6), 116–132 (1978).

    Article  MathSciNet  Google Scholar 

  11. R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations,” USSR Comput. Math. Math. Phys. 2(6), 1355–1365 (1963).

    Article  Google Scholar 

  12. I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 24(4), 128–138 (1984).

    Article  MATH  Google Scholar 

  13. A. S. Kholodov, “The construction of difference schemes of increased order of accuracy for equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 20(6), 234–253 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46(9), 1560–1588 (2006).

    Article  MathSciNet  Google Scholar 

  15. I. B. Petrov and A. S. Kholodov, “Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method,” USSR Comput. Math. Math. Phys. 24(3), 61–73 (1984).

    Article  MATH  Google Scholar 

  16. V. I. Kondaurov and V. N. Kukudzhanov, “On constitutive equations and numerical solution of multidimensional elastoplastic problems with finite deformations,” Collections of Papers on Numerical Methods in Solid Mechanics (Moscow, 1978), pp. 84–122.

    Google Scholar 

  17. I. B. Petrov, A. G. Tormasov, and A. S. Kholodov, “On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid,” USSR Comput. Math. Math. Phys. 30(4), 191–196 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  18. I. B. Petrov and A. G. Tormasov, “Numerical investigation of the three-dimensional compression wave flow over an obstacle or cavity in an elastoplastic half-space,” Sov. Phys. Dokl. 35(4), 915–918 (1990).

    MATH  MathSciNet  Google Scholar 

  19. V. D. Ivanov, I. B. Petrov, and Yu. V. Suvorova, “Computation of wave processes in hereditary viscoelastic media,” Mech. Composit. Mater. 26(3), 329–332 (1990).

    Article  Google Scholar 

  20. I. B. Petrov, A. G. Tormasov, and A. S. Kholodov, “On the numerical study of unsteady processes in layered solids,” Izv. Akad. Nauk SSSR. Ser. Mekh. Tverd. Tela, No. 4, 89–95 (1989).

    Google Scholar 

  21. V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method,” Comput. Math. Math. Phys. 53(10), 1523–1533 (2013).

    Article  MathSciNet  Google Scholar 

  22. I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, and I. E. Kvasov, “Grid-characteristic method with high-order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Mat. Model. 25(2), 42–52 (2013).

    Google Scholar 

  23. V. B. Levyant, I. B. Petrov, and V. B. Chelnokov, “Nature of the scattered seismic effect produced by a zone of diffuse cavities and fractures in massive rock,” Geofizika, No. 6, 5–19 (2005).

    Google Scholar 

  24. V. D. Ivanov, V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Computation of dynamic deformation and fracture of elastoplastic bodies by applying the grid-characteristic method,” Mat. Model. 2(11), 10–29 (1990).

    MATH  MathSciNet  Google Scholar 

  25. I. B. Petrov and F. B. Chelnokov, “Numerical analysis of wave processes and fracture in layered targets,” Comput. Math. Math. Phys. 43(10), 1503–1519 (2003).

    MathSciNet  Google Scholar 

  26. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation (Elsevier, New York, 1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Golubev.

Additional information

Original Russian Text © V.I. Golubev, I.B. Petrov, N.I. Khokhlov, K.I. Shul’ts, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 3, pp. 512–522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, V.I., Petrov, I.B., Khokhlov, N.I. et al. Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes. Comput. Math. and Math. Phys. 55, 509–518 (2015). https://doi.org/10.1134/S0965542515030082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515030082

Keywords

Navigation