Skip to main content
Log in

Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of polyhedral approximation of a multidimensional ball is considered. It is well known that the norm of the f-vector (the maximum number of faces of all dimensions) of an approximating polytope grows at least as fast as O(1 − d)/2), where δ is the Hausdorff deviation and d is the space dimension. An iterative method, namely, the deep holes method is used to construct metric nets. As applied to the problem under study, the method sequentially supplements the vertex set of the polytope with its deep holes in the metric on the ball surface (i.e., with points of the surface that are farthest away from the vertices of the polytope). It is shown that the facet structure cardinality of the constructed polytope has an optimal growth rate. It is also shown that the number of faces of all dimensions in the approximating polytopes generated by the method is asymptotically proportional to the number of their vertices. Closed-form expressions for the constants are obtained, which depend only on the dimension of the space, including the case of high dimensions. For low dimensions (d ranging from 3 to 5), upper bounds for the growth rate of the number of faces of all dimensions are obtained depending on the accuracy of the approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Gruber, “Aspects of approximation of convex bodies,” in Handbook of Convex Geometry, Ed. by P. M. Gruber and J. M. Willis (Elsevier Science, Amsterdam, 1993), Ch. 1.10, pp. 321–345.

    Google Scholar 

  2. E. M. Bronshtein, “Polyhedral approximation of convex sets,” Sovrem. Mat. Fundam. Napravlen. Geom. 22, 5–37 (2007).

    Google Scholar 

  3. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969; Gordon and Breach, New York, 1986).

    Google Scholar 

  4. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    Book  Google Scholar 

  5. K. Böröczky, Jr., “Polytopal approximation bounding the number of k-faces,” J. Approx. Theory 102, 263–285 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  6. K. J. Böröczky, F. Fodov, and V. Vigh, “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges,” Beit. Alg. Geom. 49, 177–193 (2008).

    MATH  Google Scholar 

  7. V. A. Bushenkov and A. V. Lotov, Methods for the Construction and Use of Generalized Reachable Sets (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1982) [in Russian].

    Google Scholar 

  8. G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method,” Comput. Math. Math. Phys. 41, 1667–1675 (2001).

    MATH  MathSciNet  Google Scholar 

  9. G. K. Kamenev, Optimal Adaptive Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  10. R. V. Efremov and G. K. Kamenev, “Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems,” Ann. Oper. Res. 166, 271–279 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. V. Efremov and G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 51, 952–964 (2011).

    Article  MathSciNet  Google Scholar 

  12. G. K. Kamenev, “Polyhedral approximation of the ball by the deep holes method with an optimal growth order of the facet structure cardinality,” Proceedings of International Conference on Numerical Geometry, Mesh Generation, and High-Performance Computations (NUMGRID2010), Moscow, October 11–13, 2010 (Folium, Moscow, 2010), pp. 47–52.

    Google Scholar 

  13. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Construction of suboptimal coverings of the multidimensional unit sphere,” Dokl. Math. 85, 425–427 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  14. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Iterative method for constructing coverings of the multidimensional unit sphere,” Comput. Math. Math. Phys. 53, 131–143 (2013).

    Article  Google Scholar 

  15. A. Bröndsted, An Introduction to Convex Polytopes (Springer-Verlag, New York, 1988; Mir, Moscow, 1988).

    MATH  Google Scholar 

  16. J. H. Conway and N. Sloane, Sphere Packings, Lattices, and Groups (Springer-Verlag, New York, 1988; Mir, Moscow, 1990), Vol. 1.

    Book  MATH  Google Scholar 

  17. A. N. Kolmogorov and V. M. Tikhomirov, “ℰ-entropy and ℰ-capacity of sets in function spaces,” Usp. Mat. Nauk 14(2), 3–86 (1959).

    MATH  MathSciNet  Google Scholar 

  18. C. A. Rogers, Packing and Covering (Cambridge Univ. Press, Cambridge, 1964; Mir, Moscow, 1968).

    MATH  Google Scholar 

  19. K. Böröczky, Jr., Finite Packing and Covering (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  20. R. Schneider, “Zur optimalen Approximation konvexer Hyperflachen durch Polyeder,” Math. Ann. 256, 289–301 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  21. I. M. Yaglom, “Some results concerning arrangements in n-dimensional space,” in the Russian edition of L. F. Toth, Lagerungen in der Ebene auf der Kugel und im Raum (Fizmatlit, Moscow, 1958; Springer-Verlag, Berlin, 1972).

    Google Scholar 

  22. B. Grünbaum, Convex Polytopes, 2nd ed. (Springer, New York, 2003).

    Book  Google Scholar 

  23. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture (Cambridge Univ. Press, Cambridge, 1971).

    MATH  Google Scholar 

  24. G. K. Kamenev, “A class of adaptive algorithms for approximating convex bodies by polyhedra,” Comput. Math. Math. Phys. 32, 114–127 (1992).

    MATH  MathSciNet  Google Scholar 

  25. R. L. Graham, B. D. Lubachevsky, K. J. Nurmela, and P. R. J. Östergård, “Dense packings of congruent circles in a circle,” Discrete Math. 181(1–3), 139–154 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Pfoertner, http://www.randomwalk.de/sphere/insphr/spisbest.txt.

  27. G. A. Kabatyanskii and V. I. Levenshtein, “Bounds for packings on a sphere and in space,” Probl. Peredachi Inf. 14(1), 3–25 (1978).

    Google Scholar 

  28. P. McMullen, “The maximum numbers of faces of convex polytope,” Mathematica 17, 179–184 (1970).

    MATH  MathSciNet  Google Scholar 

  29. R. Seidel, “The upper bound theorem for polytopes: An easy proof of its asymptotic version,” Comput. Geom. Theory Appl. 5, 115–116 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  30. G. M. Ziegler, Lectures on Polytopes (Springer-Verlag, Berlin, 1995).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kamenev.

Additional information

Original Russian Text © G.K. Kamenev, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 8, pp. 1235–1248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenev, G.K. Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality. Comput. Math. and Math. Phys. 54, 1201–1213 (2014). https://doi.org/10.1134/S0965542514080053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514080053

Keywords

Navigation