Skip to main content
Log in

Potential optimality in multicriterial optimization

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The relation between Pareto, Slater, Geoffrion, and potential optimality is investigated for basic classes of value functions in multicriterial optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Hazen, “Partial information, dominance, and potential optimality in multiattribute utility theory,” Operat. Res. 34, 296–310 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. S. Eum, K. S. Park, and S. H. Kim, “Establishing dominance and potential optimality in multicriteria decision analysis with imprecise weight and value,” Comput. Operat. Res. 28, 397–409 (2001).

    Article  MATH  Google Scholar 

  3. D. J. White, “Notes in decision theory: Optimality and efficiency II,” Eur. Operat. Res. 4, 426–427 (1980).

    Article  MATH  Google Scholar 

  4. V. V. Podinovski, “On the relation of the notions of potential optimality and non-dominance,” Autom. Remote Control 73, 167–170 (2012).

    Article  Google Scholar 

  5. V. V. Podinovski, “Non-dominance and Potential Optimality for Partial Preference Relations,” Eur. Operat. Res. 229, 482–486 (2013).

    Article  MathSciNet  Google Scholar 

  6. V. V. Podinovski, “Potential optimality of Pareto optima,” Proc. Comput. Sci. 17, 1107–1112 (2013).

    Article  Google Scholar 

  7. A. V. Lotov and I. I. Pospelova, Multicriterial Decision Making Problems (MAKS, Moscow, 2008) [in Russian].

    Google Scholar 

  8. E. Szpilrajn, “Sur l’extension de l’ordre partiel,” Fundam. Math. 16, 386–389 (1930).

    MATH  Google Scholar 

  9. L. Fuchs, Partially Ordered Algebraic Systems (Pergamon, Oxford, 1963; Mir, Moscow, 1965).

    MATH  Google Scholar 

  10. V. V. Podinovski and V. D. Noghin, Pareto Optimal Solutions of Multicriterial Problems (Fizmatlit, Moscow, 1982) [in Russian].

    Google Scholar 

  11. S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics (Dover, New York, 1959; Mir, Moscow, 1964).

    Google Scholar 

  12. P. L. Yu, “Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives,” J. Optim. Theory Appl. 14, 319–377 (1974).

    Article  MATH  Google Scholar 

  13. A. M. Geoffrion, “Proper efficiency and the theory of vector maximization,” J. Math. Anal. Appl. 22, 618–630 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Rios-Insua and S. French, “A framework for sensitivity analysis in discrete multi-objective decision-making,” Eur. J. Operat. Res. 5, 176–190 (1991).

    Article  Google Scholar 

  15. R. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Podinovski.

Additional information

Original Russian Text © V.V. Podinovski, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 3, pp. 415–424.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podinovski, V.V. Potential optimality in multicriterial optimization. Comput. Math. and Math. Phys. 54, 429–438 (2014). https://doi.org/10.1134/S0965542514030154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514030154

Keywords

Navigation