Skip to main content
Log in

New two-level leapfrog scheme for modeling the stochastic Landau-Lifshitz equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A two-level modification of the classical nondissipative leapfrog scheme with nonlinear flux correction has been developed for fluctuating hydrodynamics problems. The new algorithm has shown to satisfy the fluctuation-dissipation theorem to high accuracy. The results of various numerical tests, including equilibrium, nonequilibrium, one-, and two-dimensional systems, are compared with theoretical predictions, direct molecular simulations, and results produced by MacCormack’s schemes, the piecewise parabolic method, and a third-order Runge-Kutta scheme. The new algorithm is well suited for parallel computations due to its implementation simplicity and compact stencil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: The Theory of Condensed State (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 1980; Fizmatlit, Moscow, 2005).

    Google Scholar 

  3. J. B. Bell, A. I. Garcia, and S. A. Williams, “Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations,” Phys. Rev. E 76(1), 016708 (2007).

    Article  MathSciNet  Google Scholar 

  4. J. B. Bell, A. L. Garcia, and S. A. Williams, “Computational fluctuating hydrodynamics,” ESAIM: Math. Model. Numer. Anal. 44, 1085–1105 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Donev, et al., “On the accuracy of finite-volume schemes for fluctuating hydrodynamics,” Commun. Appl. Math. Comput. Sci. 5(2), 149–197 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  6. N. K. Voulgarakis and J.-W. Chu, “Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids,” J. Chem. Phys. 130, 134111 (2009).

    Article  Google Scholar 

  7. A. Pandey, A. Klar, and S. Tiwari, “Meshfree method for fluctuating hydrodynamics,” Math. Comput. Simul. 82, 2157–2166 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. D. Fabritiis, et al., “Fluctuating hydrodynamic modeling of fluids at the nanoscale,” Phys. Rev. E 75, 026307 (2007).

    Article  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  10. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 1: Fundaments of Numerical Discretization (Antony Rowe, Eastbourne, 2001).

    Google Scholar 

  11. V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balanced characteristic schemes with separated conservative and flux variables,” Mat. Model. 15(9), 29–48 (2003).

    MATH  MathSciNet  Google Scholar 

  12. S. K. Godunov, “Difference method for numerical calculation of discontinuous solutions of fluid dynamics equations,” Mat. Sb. 47(89), 271–306 (1959).

    MathSciNet  Google Scholar 

  13. S. Pirozzoli, “On spectral properties of shock-capturing schemes,” J. Comput. Phys. 219, 489–497 (2006).

    Article  MATH  Google Scholar 

  14. D. Fauconnier and F. Dick, “On the spectral and conservation properties of nonlinear discretization operators,” J. Comput. Phys. 230, 4488–4518 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. A. Ferrari and L. R. G. Fontes, “Shock fluctuations in the asymmetric simple exclusion process,” Probab. Theory Relat. Fields 99, 305–319 (1994).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Glotov.

Additional information

Original Russian Text © V.Yu. Glotov, V.M. Goloviznin, S.A. Karabasov, A.P. Markesteijn, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 2, pp. 298–317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotov, V.Y., Goloviznin, V.M., Karabasov, S.A. et al. New two-level leapfrog scheme for modeling the stochastic Landau-Lifshitz equations. Comput. Math. and Math. Phys. 54, 315–334 (2014). https://doi.org/10.1134/S0965542514020079

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514020079

Keywords

Navigation