Skip to main content
Log in

On the exact solitary wave solutions of a special class of Benjamin-Bona-Mahony equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The general form of Benjamin-Bona-Mahony equation (BBM) is

$u_t + au_x + bu_{xxt} + (g(u))_x = 0,a,b \in \mathbb{R},$

where ab ≠ 0 and g(u) is a C 2-smooth nonlinear function, has been proposed by Benjamin et al. in [1] and describes approximately the unidirectional propagation of long wave in certain nonlinear dispersive systems. In this payer, we consider a new class of Benjamin-Bona-Mahony equation (BBM)

$u_t + au_x + bu_{xxt} + (pe^u + qe^{ - u} )_x = 0,a,b,p,q \in \mathbb{R},$

where ab ≠ 0, and qp ≠ 0, and we obtain new exact solutions for it by using the well-known (G′/G)-expansion method. New periodic and solitary wave solutions for these nonlinear equation are formally derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems,” Phil. Trans. R. Soc. London 272, 4748 (1972).

    MathSciNet  Google Scholar 

  2. J. Scott Russell, “Report on waves,” Fourteenth Meeting of the British Association for the Advancement of Science 1844.

    Google Scholar 

  3. M. J. Ablowtiz and J. F. Ladik, “On the solution of a class of nonlinear partial difference equations,” Stud. Appl. Math. 57, 1–12 (1977).

    Google Scholar 

  4. M. Wadati, “Transformation theories for nonlinear discrete systems,” Prog. Theor. Phys. Suppl. 59, 36–63 (1976).

    Article  Google Scholar 

  5. H. W. Tam and X. B. Hu, “Soliton solutions and Bácklund transformation for the Kupershmidt five-field lattice: A bilinear approach,” Appl. Math. Lett. 15, 987–993 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hua Wu and Da-Jun Zhang, “Mixed rational soliton solutions of two differential-difference equations in Casorati determinant form,” J. Math. Phys. A: Gen. Math. 36, 4867–4873 (2003).

    Article  MATH  Google Scholar 

  7. A. M. Wazwaz, “The tanh method for travelling wave solutions to the Zhiber Shabat equation and other related equations,” Comm. Nonlin. Sci. Numer. Simul. 13, 584–592 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. G. Fan and H. Q. Zhang, “A note on the homogeneous balance method,” Phys. Lett. A 246, 403–406 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Yan, “Abundant families of Jacobi elliptic function solutions of the (2 + 1) dimensional integrable Davey-Stewartson-type equation via a new method,” Chaos. Soliton. Fract. 18, 299–309 (2003).

    Article  MATH  Google Scholar 

  10. H. Hirota and A. Ramani, “The Miura transformations of Kaups equation and of Mikhailovs equation,” Phys. Lett. A 76, 95–96 (1980).

    Article  MathSciNet  Google Scholar 

  11. C. T. Yan, “A simple transformation for nonlinear waves,” Phys. Lett. A 224, 77–84 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. H. He and X. H. Wu, “Exp-function method for nonlinear wave equations,” Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. V. Demina, N. A. Kudryashov, and D. I. Sinelshchikov, “The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves,” Comput. Math. Math. Phys. 48, 2182–2193 (2008).

    Article  MathSciNet  Google Scholar 

  14. N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations,” Chaos Solitons Fractals 24, 1217–1231 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. A. Kudryashov and M. V. Demina, “Traveling wave solutions of the generalized nonlinear evolution equations,” J. Appl. Math. Comput. 210, 551–557 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. K. Vitanov, “Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs,” Commun. Nonlinear Sci. Numer. Simul. 16, 1176–1185 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Wang, X. Li, J. Zhang, “The \(\left( {\frac{{G'}} {G}} \right) \)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics,” Phys. Lett. A 372, 417–423 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Reza Abazari, “The \(\left( {\frac{{G'}} {G}} \right) \)-expansion method for the coupled Boussinesq equation,” Proc. Eng. 10, 2845–2850 (2011).

    Article  MathSciNet  Google Scholar 

  19. Reza Abazari, “The solitary wave solutions of Zoomeron equation,” Appl. Math. Sci. 5(59), 2943–2949 (2011).

    MathSciNet  MATH  Google Scholar 

  20. Reza Abazari, “Application of \(\left( {\frac{{G'}} {G}} \right) \)-expansion method to travelling wave solutions of three nonlinear evolution equation,” Comput. Fluids 39, 1957–1963 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. Reza Abazari, “The \(\left( {\frac{{G'}} {G}} \right) \)-expansion method for Tzitzéica type nonlinear evolution equations,” Math. Comput. Model. 52, 1834–1845 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. Reza Abazari and Rasoul Abazari, “Hyperbolic, trigonometric and rational function solutions of Hirota-Ramani equation via \(\left( {\frac{{G'}} {G}} \right) \)-expansion method,” Math. Prob. Eng. 2011, Article ID 424801, 11 pages, doi:10.1155/2011/424801.

    Google Scholar 

  23. Reza Abazari, “Solitary-wave solutions of Klein-Gordon equation with quintic nonlinearity,” J. Appl. Mech. Tech. Phys. 54(3), 397–403 (2013).

    Article  Google Scholar 

  24. K. Al-Khaled, “Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations,” Appl. Math. Comput. 171(1), 281–292 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. M. Wazwaz, “New travelling wave solutions of different physical structures to generalized BBM equation,” Phys. Lett. A 355, 358–362 (2006).

    Article  Google Scholar 

  26. A. Biswas and S. Konar, “Soliton perturbation theory for the generalized Benjamin-Bona-Mahoney equation,” Commun. Nonlinear Sci. Numer. Simul. 13, 703–706 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Z. Ganji, D. D. Ganji, and H. Bararnia, “Approximate general and explicit solutions of nonlinear BBMB equations by exp-function method,” Appl. Math. Model. 33, 1836–1841 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abazari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abazari, R. On the exact solitary wave solutions of a special class of Benjamin-Bona-Mahony equation. Comput. Math. and Math. Phys. 53, 1371–1376 (2013). https://doi.org/10.1134/S0965542513090133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513090133

Mathematics Subject Classification

Keywords

Navigation