Skip to main content
Log in

The use of high-order composite compact schemes for computing supersonic jet interaction with a surface

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

High-order composite compact schemes are applied to the simulation of viscous gas dynamics with strong discontinuities of flow variables. To perform shock-capturing computations of such problems, the dissipation of the basic operators is enhanced and the solutions obtained with these operators are locally replaced by those produced with the help of simple one-sided differences. Numerical results obtained for the shock interaction of a supersonic axisymmetric jet with a flat surface are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Tolstykh, “Multioperator schemes of arbitrary order based on noncentered compact approximations,” Dokl. Math. 59, 409–412 (1999).

    Google Scholar 

  2. S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 102, 16–42 (1992).

    Article  MathSciNet  Google Scholar 

  3. M. R. Visbal and D. V. Gaitonde, “On the use of high-order finite-difference schemes on curvilinear and deforming meshes,” J. Comput. Phys. 181, 155–185 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bogey and C. Bailly, “A family of low dispersive and low dissipative explicit schemes for noise computations,” J. Comput. Phys. 194, 194–214 (2004).

    Article  MATH  Google Scholar 

  5. S. Lele, S. K. Lele, and P. Moin, “Direct numerical simulation of isotropic turbulence interacting with a shock wave,” J. Fluid Mech. 251, 533–562 (1993).

    Article  Google Scholar 

  6. C. Bogey, N. de Cacqueray, and C. Bailly, “A shock-capturing methodology based on adaptative spatial filtering for high-order nonlinear computations,” J. Comput. Phys. 228, 1447–1465 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. D. Savel’ev, “On the structure of internal dissipation of composite compact schemes for gasdynamic simulation,” Comput. Math. Math. Phys. 49, 2135–2148 (2009).

    Article  MathSciNet  Google Scholar 

  8. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52, 578–600 (2012).

    Article  Google Scholar 

  9. A. I. Tolstykh, “Hybrid schemes with high-order multioperators for computing discontinuous solutions,” Comput. Math. Math. Phys. 53, 1481–1502 (2013).

    Google Scholar 

  10. P. Bradshow and M. L. Edna, “The normal impingement of a circular air jet on a flat surface,” Aerodynamical Division, N.P.L., Reports and Memoranda, No. 3205, September, 1959.

    Google Scholar 

  11. C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1: Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281–319 (1971).

    Article  Google Scholar 

  12. I. P. Ginzberg, B. G. Semilentenko, V. S. Terpigorev, and V. N. Uskov, “Some singularities of supersonic underexpanded jet interaction with a plane obstacle,” J. Eng. Phys. 19, 1081–1084 (1973).

    Article  Google Scholar 

  13. P. J. Lamont and B. L. Hunt, “The impingement of underexpanded axisymmetric jets on perpendicular and inclined flat plates,” J. Fluid Mech. 100, 471–511 (1980).

    Article  Google Scholar 

  14. A. Krothapalli, “Discrete tones generated by an impinging underexpanded rectangular jet,” AIAA J. 23, 1910–1915 (1985).

    Article  Google Scholar 

  15. C. Kuo and A. P. Dowling, “Oscillations of a moderately underexpanded choked jet impinging upon a flat plates,” J. Fluid Mech. 315, 267–291 (1996).

    Article  MATH  Google Scholar 

  16. A. Krothapalli, E. Rajakuperan, F. S. Alvi, and L. Lourenco, “Flow field and noise characteristics of supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).

    Article  MATH  Google Scholar 

  17. B. Henderson, J. Bridges, and M. Wernet, “An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets,” J. Fluid Mech. 542, 115–137 (2005).

    Article  MATH  Google Scholar 

  18. N. V. Dubinskaya and M. Ya. Ivanov, “Numerical investigation of the steady-state conditions of interaction of a supersonic underexpanded jet with a plane obstacle located perpendicular to its axis,” Fluid Dyn. 11, 693–699 (1976).

    Article  Google Scholar 

  19. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, et al., Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  20. Y. Sakakibara and J. Iwamoto, “Numerical study of oscillation mechanism in underexpanded jet impinging on plate,” J. Fluids Eng. 120, 477 (1998).

    Article  Google Scholar 

  21. B. J. Gribben, K. J. Badcock, and B. E. Richards, “Numerical study of shock-reflection hysteresis in an underexpanded jet,” AIAA J. 38, 275–283 (2000).

    Article  Google Scholar 

  22. S. I. Kim and S. O. Park, “Numerical analysis of the oscillatory behaviors of supersonic impinging jet flow,” in 24th Congress of the Aeronautical Sciences (Yokohama, Japan, 2004).

    Google Scholar 

  23. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Begell House, New York, 1996).

    Google Scholar 

  24. F. R. Menter, “Zonal two equation k-ω turbulence models for aerodynamic flows,” AIAA Paper, 93–2906 (1993).

    Google Scholar 

  25. A. D. Savel’ev, “Practical comparison of two turbulent models,” Mat. Model. 21(9), 108–120 (2009).

    MATH  Google Scholar 

  26. J. L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries,” AIAA J. 16, 676–685 (1978).

    Article  Google Scholar 

  27. A. D. Savel’ev, “High-order composite compact schemes for simulation of viscous gas flows,” Comput. Math. Math. Phys. 47, 1332–1346 (2007).

    Article  MathSciNet  Google Scholar 

  28. A. D. Savel’ev, “Application of high-order difference operators in aerodynamic numerical simulation,” Mat. Model. 24(4), 80–94 (2012).

    MathSciNet  MATH  Google Scholar 

  29. A. I. Tolstykh, Compact Difference Schemes and Their Application to Aerohydrodynamic Problems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Savel’ev.

Additional information

Original Russian Text © A.D. Savel’ev, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 10, pp. 1746–1759.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savel’ev, A.D. The use of high-order composite compact schemes for computing supersonic jet interaction with a surface. Comput. Math. and Math. Phys. 53, 1558–1570 (2013). https://doi.org/10.1134/S0965542513080101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513080101

Keywords

Navigation