Skip to main content
Log in

Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A reduced latitude-longitude grid is a modified version of a uniform spherical grid in which the number of longitudinal grid points is not fixed but depends on latitude. A method for constructing a reduced grid for a global finite-difference semi-Lagrangian atmospheric model is discussed. The key idea behind the algorithm is to generate a one-dimensional latitude grid and then to find a reduced grid that not only has a prescribed resolution structure and an admissible cell shape distortion but also minimizes a certain functional. The functional is specified as the rms interpolation error of an analytically defined function. In this way, the interpolation error, which is a major one in finite-difference semi-Lagrangian models, is taken into account. The potential of the proposed approach is demonstrated as applied to the advection equation on a sphere, which is numerically solved with various velocity fields on constructed reduced grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Boybeyi, N. N. Ahmad, D. P. Bacon, et al., “Evaluation of the Operational Multiscale Environment Model with Grid Adaptivity against the European Tracer Experiment,” J. Appl. Meteorol. 40, 1541–1558 (2001).

    Article  Google Scholar 

  2. W. C. Skamarock, J. Oliger, and R. L. Street, “Adaptive Grid Refinements for Numerical Weather Prediction,” J. Comput. Phys. 80, 27–60 (1989).

    Article  MATH  Google Scholar 

  3. D. Williamson, “Difference Approximations for Fluid Flow on a Sphere,” Numerical Methods Used in Atmospheric Models GARP Publication Series, No. 17 (WMO, Geneva, 1979; Gidrometeoizdat, Leningrad, 1982), Vol. 2.

    Google Scholar 

  4. D. Majewski, D. Liermann, P. Prohl, et al., “The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests,” Mon. Weather Rev. 130, 319–338 (2002).

    Article  Google Scholar 

  5. S. G. Benjamin, G. A. Grell, J. M. Brown, et al., “Mesoscale Weather Prediction with the RUC Hybrid Isentropic/Terrain-Following Coordinate Model,” Mon. Weather Rev. 132, 473–494 (2004).

    Article  Google Scholar 

  6. ICON GCM: ICOsahedral Nonhydrostatic Generation Circulation Model. http://icon.enes.org/

  7. R. L. Walko and R. Avissar, “The Ocean-Land-Atmosphere Model (OLAM): Part II. Formulation and Tests of the Nonhydrostatic Dynamic Core,” Mon. Weather Rev. 136, 4045–4062 (2008).

    Article  Google Scholar 

  8. H. Weller, E. G. Weller, and A. Fournier, “Voronoi, Delaunay, and Block-Regular grid Refinement for Solution of the Shallow-Water Equations on the Sphere,” Mon. Weather Rev. 137, 4208–4224 (2009).

    Article  Google Scholar 

  9. D. L. Williamson and G. L. Browning, “Comparison of Grid and Difference Approximations for Numerical Weather Prediction over the Sphere,” J. Appl. Meteorol. 106, 69–88 (1973).

    Google Scholar 

  10. W. D. Collins, P. J. Rasch, B. A. Boville, et al., “The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3),” J. Clim. 19, 2144–2161 (2006).

    Article  Google Scholar 

  11. R. Sadourny, “Conservative Finite-Difference Approximations of the Shallow-Water Equations,” Mon. Weather Rev. 100, 136–144 (1972).

    Article  Google Scholar 

  12. A. Kageyama and T. Sato, “The ‘Yin-Yang Grid’: An Overset Grid in Spherical Geometry,” Geochem. Geophys. Geosyst. 5(9), 1–15 (2004).

    Article  Google Scholar 

  13. X. Li, D. Chen, X. Peng, et al., “A Multimoment Finite-Volume Shallow-Water Model on the Yin-Yang Overset Spherical Grid,” Mon. Weather Rev. 136, 3066–3086 (2008).

    Article  Google Scholar 

  14. A. Qaddouri, “Nonlinear Shallow-Water Equations on the Yin-Yang Grid,” Quart. J. R. Meteorol. Soc. 137, 810–818 (2011).

    Article  Google Scholar 

  15. W. L. Gates and G. A. Riegel, “A Study of Numerical Errors in the Integration of Barotropic Flow on a Spherical Grid,” J. Geophys. Res. 67, 773–784 (1962).

    Article  MathSciNet  Google Scholar 

  16. Y. Kurihara, “Numerical Integration of the Primitive Equations on a Spherical Grid,” Mon. Weather Rev. 93, 399–415 (1965).

    Article  Google Scholar 

  17. F. G. Shuman, “On Certain Truncation Errors Associated with Spherical Coordinates,” J. Appl. Meteorol. 9, 564–570 (1970).

    Article  Google Scholar 

  18. M. Jarraud and A. J. Simmons, “The Spectral Technique,” in Proceedings of the 1983 ECMWF Seminar on Numerical Methods for Weather Prediction (Reading, UK, 1983), Vol. 2, pp. 1–60.

  19. M. Naughton and P. Courtier, “A Pole Problem in the Reduced Gaussian Grid,” Quart. J. R. Meteorol. Soc. 120, 1389–1407 (1994).

    Article  Google Scholar 

  20. D. L. Williamson and J. M. Rosinski, “Accuracy of Reduced-Grid Calculations,” Quart. J. R. Meteorol. Soc. 126, 1619–1640 (2000).

    Article  Google Scholar 

  21. G. Jablonowski, R. G. Oehmke, and Q. F. Stout, “Block-Structured Adaptive Meshes and Reduced Grids for Atmospheric General Circulation Models,” Philos. Trans. A Math. Phys. Eng. Sci. 367, 4497–4522 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Yu. Fadeev, “Construction of a Reduced Latitude-Longitude Grid for a Global Numerical Weather Prediction Problem,” Meteorol. Gidrol., No. 9, 5–20 (2006).

  23. P.-O. Persson and G. Strang, “A Simple Mesh Generator in MATLAB,” SIAM Rev. 46, 329–345 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Tolstykh, Global Semi-Lagrangian Model for Numerical Weather Prediction (FOP, Obninsk, 2010) [in Russian].

    Google Scholar 

  25. A. Staniforth and J. Cote, “Semi-Lagrangian Integration Schemes for Atmospheric Models: A Review,” Mon. Weather Rev. 119, 2206–2223 (1991).

    Article  Google Scholar 

  26. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975; Mir, Moscow, 1977).

    Google Scholar 

  27. C. Temperton, M. Hortal, and A. Simmons, “A Two-Time-Level Semi-Lagrangian Global Spectral Model,” Quart. J. R. Meteorol. Soc. 127, 111–129 (2001).

    Article  Google Scholar 

  28. D. L. Williamson, J. Drake, J. J. Hack, et al., “A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry,” J. Comput. Phys. 102, 211–224 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. A. Doswell, “A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex,” J. Atmos. Sci. 41, 1242–1248 (1984).

    Article  Google Scholar 

  30. R. Nair and B. Machenhauer, “The Mass Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere,” Mon. Weather Rev. 130, 649–667 (2002).

    Article  Google Scholar 

  31. M. Zerroukat, N. Wood, and A. Staniforth, “A Semi-Lagrangian Inherently Conserving and Efficient Scheme for Transport Problems,” Quart. J. R. Meteorol. Soc. 128, 221–224 (2002).

    Article  Google Scholar 

  32. M. Zerroukat, N. Wood, and A. Staniforth, “SLICE-S: A Semi-Lagrangian Inherently Conserving and Efficient Scheme for Transport Problems on the Sphere,” Quart. J. R. Meteorol. Soc. 130, 2649–2664 (2004).

    Article  Google Scholar 

  33. M. A. Tolstykh and V. V. Shashkin, “Vorticity-Divergence Mass-Conserving Semi-Lagrangian Shallow-Water Model Using the Reduced Grid on the Sphere,” J. Comput. Phys. 231, 4205–4233 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Fadeev.

Additional information

Original Russian Text © R.Yu. Fadeev, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 2, pp. 291–308.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, R.Y. Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model. Comput. Math. and Math. Phys. 53, 237–252 (2013). https://doi.org/10.1134/S0965542513020073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513020073

Keywords

Navigation