Skip to main content
Log in

Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A PPML algorithm for the simulation of hydrodynamic flows on a cylindrical grid is described. The algorithm is based on a local stencil variant of the popular piecewise parabolic method (PPM). Numerical results obtained a point explosion in a homogeneous medium (Sedov self-similar solution) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Fryxell, et al., “FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes,” Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  Google Scholar 

  2. B. O’shea, et al., “Introducing Enzo, an AMR Cosmology Application,” Adaptive Mesh Refinement-Theory and Applications (Springer-Verlag, Berlin, 2005), pp. 341–350.

    Chapter  Google Scholar 

  3. J. M. Stone, T. A. Gardiner, P. Teuben, et al., “Athena: A New Code for Astrophysical MHD,” Astrophys. J. Suppl. Ser. 178, 137–177 (2008).

    Article  Google Scholar 

  4. A. S. Almgren, et al., “CASTRO: A New Compressible Astrophysical Solver: I. Hydrodynamics and Self-Gravity,” Astrophys. J. 715, 1221–1238 (2010).

    Article  Google Scholar 

  5. P. Colella and P. Woodward, “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations,” J. Comput. Phys. 54(1), 174–201 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. V. Popov and S. D. Ustyugov, “Piecewise Parabolic Method on Local Stencil for Gasdynamic Simulations,” Comput. Math. Math. Phys. 47, 1970–1989 (2007).

    Article  MathSciNet  Google Scholar 

  7. M. V. Popov and S. D. Ustyugov, “Piecewise Parabolic Method on a Local Stencil for Ideal Magnetohydrodynamics,” Comput. Math. Math. Phys. 48, 477–499 (2008).

    Article  MathSciNet  Google Scholar 

  8. S. D. Ustyugov, M. V. Popov, A. G. Kritsuk, and M. L. Norman, “Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation,” J. Comput. Phys. 228, 7614–7633 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. L. Roe, “Characteristic-Based Schemes for the Euler Equations,” Annu. Rev. Fluid Mech. 18, 337–365 (1986).

    Article  MathSciNet  Google Scholar 

  10. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer-Verlag, Berlin, 1999).

    MATH  Google Scholar 

  11. L. I. Sedov, “Propagation of Strong Blast Waves,” Prikl. Mat. Mekh. 10(2), 241–250 (1946).

    MathSciNet  Google Scholar 

  12. B. Fryxell, E. Müller, and D. Arnett, “Instabilities and Clumping in SN 1987A: I. Early Evolution in Two Dimensions,” Astrophys. J. 367, 619–634 (1991).

    Article  Google Scholar 

  13. S. M. Couch, D. Pooley, J. C. Wheeler, and M. Milosavljevi “Aspherical Supernova Shock Breakout and the Observations of SN 2008D,” Astrophys. J. 727, 104–120 (2011).

    Article  Google Scholar 

  14. J. A. Quirk, “Contribution to the Great Riemann Solver Debate,” Int. J. Numer. Methods Fluids 18, 555–574 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Kifonidis, T. Plewa, H.-Th. Janka, and E. Müller, “Nonspherical Core Collapse Supernovae: I. Neutrino-Driven Convection, Rayleigh-Taylor Instabilities, and the Formation and Propagation of Metal Clumps,” Astron. Astrophys. 408, 621–649 (2003).

    Article  Google Scholar 

  16. F. Ismail, P. L. Roe, and H. Nishikawa, “A Proposed Cure to the Carbuncle Phenomenon,” Computational Fluid Dynamics 2006: Proceedings of the 4th International Conference on Computational Fluid Dynamics, ICCFD, Ghent, Belgium, July 10–14, 2006 (Springer-Verlag, Berlin, 2009).

    Google Scholar 

  17. T. A. Gardiner and J. M. Stone, “An Unsplit Godunov Method for Ideal MHD via Constrained Transport,” J. Comput. Phys. 205, 509–539 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. J. Rider, J. A. Greenough, and J. R. Kamm, “Accurate Monotonicity- and Extrema-Preserving Methods through Adaptive Nonlinear Hybridizations,” J. Comput. Phys. 225, 1827–1848 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Popov.

Additional information

Original Russian Text © M.V. Popov, 2012, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2012, Vol. 52, No. 8, pp. 1506–1522.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, M.V. Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations. Comput. Math. and Math. Phys. 52, 1186–1201 (2012). https://doi.org/10.1134/S096554251208009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251208009X

Keywords

Navigation