Skip to main content
Log in

Sensitivity function: Properties and applications

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The sensitivity function induced by a convex programming problem is examined. Its monotonicity, subdifferentiability, and closure properties are analyzed. A relation to the Pareto optimal solution set of the multicriteria convex optimization problem is established. The role of the sensitivity function in systems describing optimization problems is clarified. It is shown that the solution of these systems can often be reduced to the minimization of the sensitivity function on a convex set. Numerical methods for solving such problems are proposed, and their convergence is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gale, The Theory of Linear Economic Models (McGraw-Hill, New York, 1960).

    Google Scholar 

  2. A. C. Williams, “Marginal Values in Linear Programming,” J. Soc. Ind. Appl. Math. 11, 82–94 (1963).

    Article  MATH  Google Scholar 

  3. S. Zlobec, Stable Parametric Programming (Kluwer Academic, Dordrecht, 2001).

    MATH  Google Scholar 

  4. I. I. Eremin and N. N. Astaf’ev, Introduction to the Theory of Linear Convex Programming (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  5. K.-H. Elster, R. Reinhardt, M. Schäuble, and G. Donath, Einführung in die nichtlineare Optimierung (Teubner, Leipzig, 1977; Nauka, Moscow, 1985).

    MATH  Google Scholar 

  6. S. V. Rzhevskii, Monotone Methods of Convex Programming (Naukova Dumka, Kiev, 1993) [in Russian].

    Google Scholar 

  7. A. I. Golikov, “Characterization of Optimal Estimates Set for Multicriterial Optimization Problems,” USSR Comput. Math. Math. Phys. 28, 1285–1296 (1988).

    Article  MathSciNet  Google Scholar 

  8. V. G. Zhadan, “An Augmented Lagrange Function Method for Multicriterial Optimization Problems,” Zh. USSR Comput. Math. Math. Phys. 28(6), 1–11 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu. G. Evtushenko, Solution Methods for Optimization Problems and Applications to Optimization Systems (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis (Springer-Verlag, Berlin, 1998).

    Book  MATH  Google Scholar 

  11. F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].

    Google Scholar 

  12. A. S. Antipin, “Saddle Point Problem and Optimization Problem as a Unified System,” Tr. Inst. Mat. Mekh. 14(2), 5–15 (2008).

    Google Scholar 

  13. A. S. Antipin, “Methods of Solving Systems of Convex Programming Problems,” USSR Comput. Math. Math. Phys. 27(2), 30–35 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. S. Antipin, “Models of Interaction between Manufactures, Consumers, and the Transportation System,” Autom. Remote Control, No. 10, 1391–1398 (1990).

  15. S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics (Pergamon, London, 1959; Mir, Moscow, 1964).

    Google Scholar 

  16. A. S. Antipin, “Inverse Optimization Problems,” in Large Russian Encyclopedia (INFRA-M, Moscow, 2003), pp. 346–347 [in Russian].

    Google Scholar 

  17. A. S. Antipin, “An Extraproximal Method for Solving Equilibrium Programming Problems and Games with Coupled Constraints,” Comput. Math. Math. Phys. 45, 2020–2028 (2005).

    MathSciNet  Google Scholar 

  18. A. S. Antipin, L. A. Artem’eva, and F. P. Vasil’ev, “Multicriteria Equilibrium Programming: Extragradient Method,” Comput. Math. Math. Phys. 50, 224–230 (2010).

    Article  MathSciNet  Google Scholar 

  19. A. S. Antipin, L. A. Artem’eva, and F. P. Vasil’ev, “Regularized Extragradient Method for Solving Parametric Multicriteria Equilibrium Programming Problem,” Comput. Math. Math. Phys. 50, 1975–1989 (2010).

    Article  MathSciNet  Google Scholar 

  20. A. S. Antipin, “The Convergence of Proximal Methods to Fixed Points of Extremal Mappings and Estimates of Their Rate of Convergence,” Comput. Math. Math. Phys. 35, 539–551 (1995).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Antipin.

Additional information

Original Russian Text © A.S. Antipin, A.I. Golikov, E.V. Khoroshilova, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 12, pp. 2126–2142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipin, A.S., Golikov, A.I. & Khoroshilova, E.V. Sensitivity function: Properties and applications. Comput. Math. and Math. Phys. 51, 2000–2016 (2011). https://doi.org/10.1134/S0965542511120049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511120049

Keywords

Navigation