Skip to main content
Log in

Dimension reduction in fluid dynamics equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for transforming the Euler and Navier-Stokes equations and a complete system of fluid dynamics equations in three dimensions to a closed system on any moving surface is proposed. As a result, for an arbitrary geometric configuration, the dimension of the equations is reduced by one, which makes them convenient for numerical simulation. The general principles of the method are described, and verifying examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Pergamon, Oxford, 1964; Nauka, Moscow, 1966).

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  3. F. A. Williams, Combustion Theory (Benjamin, CA, 1985).

    Google Scholar 

  4. Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Consultants Bureau, New York, 1985).

    Google Scholar 

  5. A. A. Samarskii and Yu. P. Popov, Finite Difference Methods for Problems in Gas Dynamics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  6. V. V. Bychkov, “Nonlinear Equation for a Curved Stationary Flame and the Flame Velocity,” Phys. Fluids 10, 2091 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Bychkov, M. Zaytsev, and V. Akkerman, “Coordinate-Free Description of Corrugated Flames with Realistic Gas Expansion,” Phys. Rev. E 68, 026312 (2003).

    Article  Google Scholar 

  8. M. L. Zaytsev and V. B. Akkerman, “A Nonlinear Theory for the Motion of Hydrodynamic Discontinuity Surfaces,” Zh. Eksp. Teor. Fiz. 135, 800–819 (2009) [J. Exp. Theor. Phys. 108, 699–717 (2009)].

    Google Scholar 

  9. G. I. Sivashinsky, “Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames: I. Derivation of Basic Equations,” Acta Astronaut. 4, 1177 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Frankel, “An Equation of Surface Dynamics Modeling Flame Fronts as Density Discontinuities in Potential Flows,” Phys. Fluids A 2, 1879 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. V. Korenev, Tensor Calculus (MFTI, Moscow, 1996) [in Russian].

    Google Scholar 

  12. J. A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1954; Nauka, Moscow, 1965).

    MATH  Google Scholar 

  13. B. E. Pobedrya, Lectures on Tensor Analysis (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  14. M. V. Fedoryuk, Ordinary Differential Equations (Lan’, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  15. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations: Exact Solutions (Fizmatlit, Moscow, 2002) [in Russian].

    Book  Google Scholar 

  16. O. Yu. Travnikov, V. V. Bychkov, and M. A. Liberman, “Numerical Studies of Flames in Wide Tubes: Stability Limits of Curved Stationary Flames,” Phys. Rev. E 61, 468–474 (2000).

    Article  Google Scholar 

  17. V. V. Bychkov, S. M. Golberg, M. A. Liberman, et al., “Propagation of Curved Stationary Flames in Tubes,” Phys. Rev. E 54, 3713 (1996).

    Article  Google Scholar 

  18. S. Kadowaki, “The Influence of Hydrodynamic Instability on the Structure of Cellular Flames,” Phys. Fluids 11, 3426 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Akkerman.

Additional information

Original Russian Text © V.B. Akkerman, M.L. Zaytsev, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 8, pp. 1518–1530.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkerman, V.B., Zaytsev, M.L. Dimension reduction in fluid dynamics equations. Comput. Math. and Math. Phys. 51, 1418–1430 (2011). https://doi.org/10.1134/S0965542511080021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511080021

Keywords

Navigation