Skip to main content
Log in

A vortex method for computing two-dimensional inviscid incompressible flows

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A vortex method is suggested for computing two-dimensional inviscid incompressible flows in a closed domain with a possible flow through it. An algorithm for searching for stable steady vortex configurations is described. The method developed is used to study the dynamics of the Chaplygin-Lamb dipole in a rectangular channel in various flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Belotserkovskii and A. S. Ginevskii, Simulation of Turbulent Jets and Wakes on the Basis of the Discrete Vortex Method (Fizmatlit, Moscow, 1995) [in Russian].

    Google Scholar 

  2. G. H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice (Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  3. Yu. N. Grigor’ev and V. A. Vshivkov, Particle-in-Cell Numerical Methods (Nauka, Novosibirsk, 2000) [in Russian].

    MATH  Google Scholar 

  4. O. Hald, “Convergence of Vortex Methods II,” SIAM J. Numer. Anal. 16, 726–755 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. T. Beale and A. Majda, “Vortex Methods: II. Higher Order Accuracy in Two and Three Dimensions,” Math. Comput. 39, 29–52 (1982).

    MathSciNet  MATH  Google Scholar 

  6. C. Anderson and C. Greengard, “On Vortex Methods,” SIAM J. Numer. Anal. 22, 413–440 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Koumoutsakos, “Inviscid Axisymmetrization of an Elliptical Vortex,” J. Comput. Phys. 138, 821–857 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Strain, “2D Vortex Methods and Singular Quadrature Rules,” J. Comput. Phys. 124, 131–145 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Lamb, Hydrodynamics (Dover, New York, 1945; Gostekhizdat, Moscow, 1947).

    Google Scholar 

  10. S. A. Chaplygin, “A Case of Vortex Fluid Flow,” Tr. Otd. Fiz. Nauk Imperatorskogo Mosk. Ob-va Lyubitelei Estestvoznaniya 11(2), 11–14 (1903).

    Google Scholar 

  11. Y. Couder and C. Basdevant, “Experimental and Numerical Study of Vortex Couples in Two Dimensional Flows,” J. Fluid Mech. 173, 225–251 (1983).

    Article  Google Scholar 

  12. G. J. F. van Heijst and J. B. Flor, “Dipole Formations and Collisions in a Stratified Flow,” Nature 340, 212–215 (1989).

    Article  Google Scholar 

  13. F. O. U. Velasco and G. J. F. van Heijst, “Experimental Study of Dipolar Vortices on a Topographic Beta-Plane,” J. Fluid Mech. 259, 79–106 (1994).

    Article  Google Scholar 

  14. J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, Heidelberg, 1981; Mir, Moscow, 1984).

    Google Scholar 

  15. A. V. Kazhikhov, “Remark on the Statement of the Flow Problem for the Ideal Fluid Equations,” Prikl. Mat. Mekh. 44, 947–949 (1980).

    MathSciNet  Google Scholar 

  16. V. I. Yudovich, “A Two-Dimensional Nonstationary Problem of the Flow of an Ideal Incompressible Fluid through a Given Region,” Mat. Sb. 64, 562–588 (1964).

    MathSciNet  Google Scholar 

  17. A. Morgulis and V. Yudovich, “Arnold’s Method for Asymptotic Stability of Steady Inviscid Incompressible Flow through a Fixed Domain with Permeable Boundary,” Chaos 12, 356–371 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. N. Govorukhin, A. B. Morgulis, and V. I. Yudovich, “Computation of Two-Dimensional Flows of Inviscid Incompressible Fluid through a Rectilinear Duct,” Dokl. Akad. Nauk 412, 480–484 (2007) [Dokl. Phys. 52, 105–109 (2007)].

    Google Scholar 

  19. V. N. Govorukhin and K. I. Ilin, “Numerical Study of an Inviscid Incompressible Flow through a Channel of Finite Length,” Int. J. Numer. Methods Fluids 60, 1315–1333 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. L. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui, “Blending Finite Difference and Vortex Methods for Incompressible Flow Computations,” SIAM J. Sci. Comput. 22, 1655–1674 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Ch. Vera and T. Ch. Rebollo, “On Cubic Spline Approximations for the Vortex Patch Problem,” Appl. Numer. Math. 36, 359–387 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, London, 1994).

    MATH  Google Scholar 

  23. P. W. C. Vosbeek and R. M. M. Mattheij, “Contour Dynamics with Symplectic Time Integration,” J. Comput. Phys. 133, 222–234 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Aubry and P. Chartier, “Pseudo-Symplectic Runge-Kutta Methods,” BIT 38, 439–461 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. H. Nielsen and J. Rasmussen, “Formation and Temporal Evolution of the Lamb-Dipole,” Phys. Fluids 9, 982–991 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Govorukhin.

Additional information

Original Russian Text © V.N. Govorukhin, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 6, pp. 1133–1147.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govorukhin, V.N. A vortex method for computing two-dimensional inviscid incompressible flows. Comput. Math. and Math. Phys. 51, 1061–1073 (2011). https://doi.org/10.1134/S096554251106008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251106008X

Keywords

Navigation