Skip to main content
Log in

Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The critical dynamics of a spatially inhomogeneous system are analyzed with allowance for local nonequilibrium, which leads to a singular perturbation in the equations due to the appearance of a second time derivative. An extension is derived for the Eyre theorem, which holds for classical critical dynamics described by first-order equations in time and based on the local equilibrium hypothesis. It is shown that gradient-stable numerical algorithms can also be constructed for second-order equations in time by applying the decomposition of the free energy into expansive and contractive parts, which was suggested by Eyre for classical equations. These gradient-stable algorithms yield a monotonically nondecreasing free energy in simulations with an arbitrary time step. It is shown that the gradient stability conditions for the modified and classical equations of critical dynamics coincide in the case of a certain time approximation of the inertial dynamics relations introduced for describing local nonequilibrium. Model problems illustrating the extended Eyre theorem for critical dynamics problems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Halperin, P. C. Hohenberg, and S.-K. Ma, “Renormalization-Group Methods for Critical Dynamics: I. Recursion Relations and Effects of Energy Conservation,” Phys. Rev. 10, 139–153 (1974).

    Article  Google Scholar 

  2. A. J. Bray, “Theory of Phase Ordering Kinetics,” Adv. Phys. 43, 357–459 (1994).

    Article  MathSciNet  Google Scholar 

  3. S. M. Allen and J. W. Cahn, “A Macroscopic Theory for Antiphase Boundary Motion and Its Application To Antiphase Domain Coarsening,” Acta Metal. 27, 1085–1095 (1979).

    Article  Google Scholar 

  4. J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform System: I. Interfacial Free Energy,” J. Chem. Phys. 28, 258–267 (1958).

    Article  Google Scholar 

  5. J. Swift and P. C. Hohenberg, “Hydrodynamic Fluctuations at Convective Instability,” Phys. Rev. A 15, 319–328 (1977).

    Article  Google Scholar 

  6. K. R. Elder and M. Grant, “Modeling Elastic and Plastic Deformations in Nonequilibrium Processing Using Phase Field Crystals,” Phys. Rev. E 70, 051605 (2004).

    Article  Google Scholar 

  7. J. D. Gunton, R. Toral, and A. Chakrabarti, “Numerical Studies of Phase Separation,” Phys. Scr. 33, 12–19 (1990).

    Article  Google Scholar 

  8. N. Vladimirova, A. Malagoli, and R. Mauri, “Diffusion-Driven Phase Separation of Deeply Quenched Mixtures,” Phys. Rev. E 58, 7691 (1998).

    Article  Google Scholar 

  9. S. Wise, J. Kim, and J. Lowengrub, “Solving the Regularized, Strongly Anisotropic Cahn-Hilliard Equation by An Adaptive Nonlinear Multigrid Method,” Comput. Phys. 226, 414–446 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Singer-Loginova and H. M. Singer, “The Phase Field Technique for Modeling Multiphase Materials,” Rep. Progress. Phys. 71, 106501 (2008).

    Article  Google Scholar 

  11. H. Emmerich, “Advances of and by Phase-Field Modeling in Condensed-Matter Physics,” Adv. Phys. 57(1), 1–87 (2008).

    Article  Google Scholar 

  12. T. M. Rogers, K. R. Elder, and R. C. Desai, “Numerical Study of the Late Stages of Spinodal Decomposition,” Phys. Rev. B 37, 9638 (1988).

    Article  Google Scholar 

  13. D. J. Eyre, Preprint (http://www.math.utah.edu/~eyre/research/methods/stable.ps).

  14. D. J. Eyre, “Unconditionally Gradient-stable Time Step Marching the Cahn-Hilliard Equation,” Computational and Mathematical Models of Microstructural Evolution (Materials Res. Soc. Warrendale, PA, 1998), pp. 39–46.

    Google Scholar 

  15. B. P. Vollmayer-Lee and A. D. Rutenberg, “Fast and Accurate Coarsening Simulation with an Unconditionally Stable Time Step,” Phys. Rev. E 68, 66703 (2003).

    Article  Google Scholar 

  16. M. Cheng and J. A. Warren, “Controlling the Accuracy of Unconditionally Stable Algorithms in the Cahn-Hilliard Equation,” Phys. Rev. E 75, 017702 (2007).

    Article  Google Scholar 

  17. M. Cheng and J. A. Warren, “An Efficient Algorithm for Solving the Phase Field Crystal Model,” J. Comput. Phys. 227, 6241–6248 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics, 4th ed. (Springer-Verlag, Berlin, 2010; Moscow, RKhD, 2006).

    Book  MATH  Google Scholar 

  19. D. Herlach, R. Galenko, and D. Holland-Moritz, Metastable Solids from Undercooled Melts (Elsevier, Amsterdam 2007; Moscow, RKhD, 2010).

    Google Scholar 

  20. P. Galenko, “Phase-Field Model with Relaxation of the Diffusion Flux in Nonequilibrium Solidification of a Binary System,” Phys. Lett. A 287(3, 4), 190–197 (2001).

    Article  Google Scholar 

  21. P. Galenko and D. Jou, “Diffuse-Interface Model for Rapid Phase Transformations in Nonequilibrium Systems,” Phys. Rev. E 71, 046125 (2005).

    Article  Google Scholar 

  22. P. Galenko and V. Lebedev, “Analysis of the Dispersion Relation in Spinodal Decomposition of a Binary System,” Philos. Mag. Lett. 87, 821–827 (2007).

    Article  Google Scholar 

  23. P. Galenko, D. Danilov, and V. Lebedev, “Phase-Field-Crystal and Swift-Hohenberg Equations with Fast Dynamics,” Phys. Rev. E 79, 051110 (2009).

    Article  MathSciNet  Google Scholar 

  24. N. Lecoq, H. Zapolsky, and P. Galenko, “Evolution of the Structure Factor in a Hyperbolic Model of Spinodal Decomposition,” Eur. Phys. J. Special Topics 117, 165–175 (2009).

    Article  Google Scholar 

  25. P. Galenko, “Solute Trapping and Diffusionless Solidification in a Binary System,” Phys. Rev. E 76, 031606 (2007).

    Article  Google Scholar 

  26. V. G. Lebedev, E. V. Abramova, D. A. Danilov, and P. K. Galenko, “Phase-Field Modeling of Solute Trapping: Comparative Analysis of Parabolic and Hyperbolic Models,” Int. J. Math. Res. 101, 473–479 (2010).

    Google Scholar 

  27. M. Asta, H. Harith, Y. Yang, S. Deyan, et al., “Molecular Dynamics Simulations of Solute Trapping and Solute Drag,” Abstracts of Conference PTM-2010 (Avignon, France, 2010), p. 29.

    Google Scholar 

  28. L. D. Landau, “Scattering of X-Rays by Crystals near the Curie Point,” Zh. Eksp. Teor. Fiz. 7 1232 (1937).

    Google Scholar 

  29. V. L. Ginzburg and L. D. Landau, “On the Theory of Superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  30. S. A. Brazovskii, “Phase Transition of an Isotropic System to an Inhomogeneous State,” Zh. Eksp. Teor. Fiz. 68, 175–185 (1975).

    Google Scholar 

  31. P. Galenko and D. Jou, “Kinetic Contribution to the Fast Spinodal Decomposition Controlled by Diffusion,” Physica 388, 3113–3123 (2009).

    Article  MathSciNet  Google Scholar 

  32. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960), Vol. 1.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Galenko.

Additional information

Original Russian Text © P.K. Galenko, V.G. Lebedev, and A.A. Sysoeva, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 6, pp. 1148–1165.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galenko, P.K., Lebedev, V.G. & Sysoeva, A.A. Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics. Comput. Math. and Math. Phys. 51, 1074–1090 (2011). https://doi.org/10.1134/S0965542511060078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511060078

Keywords

Navigation