Skip to main content
Log in

On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Main results of the development of the multioperator method for constructing approximations of prescribed order are presented. Multioperators for various approximation problems are considered. The focus is on the multioperators for convective terms in fluid dynamics equations. Types of multioperator schemes are described and possibilities for their optimization are discussed. Results of solving benchmark problems in the case of tenth- and 18th-order schemes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.-D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-Oscillatory Schemes,” J. Comput. Phys. 115, 200–212 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. I. Tolstykh, “Multioperator Schemes of Arbitrary Order Based on Noncentered Compact Approximations,” Dokl. Akad. Nauk 366, 319–322 (1999) [Dokl. Math. 59, 409–412 (1999)].

    MathSciNet  Google Scholar 

  3. A. I. Tolstykh, “Construction of Schemes of Prescribed Order of Accuracy with Linear Combinations of Operators,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1206–1220 (2000) [Comput. Math. Math. Phys. 40, 1159–1172 (2000)].

    MathSciNet  Google Scholar 

  4. M. V. Lipavskii and A. I. Tolstykh, “Fifth- and Seventh-Order Accurate Multioperator Compact Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1018–1034 (2003) [Comput. Math. Math. Phys. 43, 975–990 (2003)].

    MATH  MathSciNet  Google Scholar 

  5. M. V. Lipavskii, A. I. Tolstykh, and E. N. Chigarev, “A Parallel Computational Scheme with Ninth-Order Multioperator Approximations and Its Application to Direct Numerical Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 46, 1433–1452 (2006) [Comput. Math. Math. Phys. 46, 1359–1377 (2006)].

    Google Scholar 

  6. M. V. Lipavskii and E. N. Chigerev, Numerical Analysis of Eddy Fluid Motions Using Noncentered Compact Approximations (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2004) [in Russian].

    Google Scholar 

  7. A. D. Savel’ev, A. I. Tolstykh, and D. A. Shirobokov, “Application of Compact and Multioperator Schemes to the Numerical Simulation of Acoustic Fields Generated by Instability Waves in Supersonic Jets,” Zh. Vychisl. Mat. Mat. Fiz. 49, 1280–1294 (2009) [Comput. Math. Math. Phys. 49, 1221–1234 (2009)].

    MathSciNet  Google Scholar 

  8. A. I. Tolstykh, Compact Finite Difference Schemes and Their Applications in Fluid Dynamics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. A. I. Tolstykh, High Accuracy Non-Centered Compact Difference Schemes for Fluid Dynamics Applications (World Sci., Singapore, 1994).

    Google Scholar 

  10. M. V. Lipavskii and A. I. Tolstykh, “Comparative Efficiency of Schemes Based on Upwind Compact Approximations,” Zh. Vychisl. Mat. Mat. Fiz. 39, 1705–1720 (1999) [Comput. Math. Math. Phys. 39, 1636–1650 (1999)].

    MathSciNet  Google Scholar 

  11. A. I. Tolstykh, “A Family of Compact Approximations and Related Multioperator Approximations of a Given Order,” Dokl. Akad. Nauk 403, 172–177 (2005) [Dokl. 72, 519–524 (2005)].

    MathSciNet  Google Scholar 

  12. A. I. Tolstykh, “On a Numerical Method for Navier-Stokes Equations in the Case of Compressible Gas and a Wide Range of Reynolds Numbers,” Dokl. Akad. Nauk SSSR 210(2), 48–51 (1973).

    Google Scholar 

  13. A. I. Tolstykh, “On a Class of Noncentered Compact Fifth-Order Finite Difference Schemes Based on Pade Approximations,” Dokl. Akad. Nauk SSSR 319(1), 72–77 (1991).

    Google Scholar 

  14. A. I. Tolstykh, “Development of Arbitrary-Order Multioperators-Based Schemes for Parallel Calculations. 1. Higher-than-Fifth Order Approximations to Convection Terms,” J. Comput. Phys. 225, 2333–2353 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. I. Tolstykh, “Development of Arbitrary-Order Multioperators-Based Schemes for Parallel Calculations. 2. Families of Compact Approximations with Two-Diagonal Inversions and Related Multioperators,” J. Comput. Phys. 227, 2922–2940 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. K. Lele, “Compact Finite Difference Schemes with Spectral-Like Resolution,” J. Comput. Phys. 102, 16–42 (1992).

    Article  MathSciNet  Google Scholar 

  17. C. K. W. Tam and J. C. Webb, “Dispersion-Relation Preserving Finite Difference Schemes for Computational Acoustics,” J. Comput. Phys. 107, 262 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  18. N. A. Adams and K. Sharif, “A High-Resolution Compact-ENO Scheme for Shock-Turbulence Interaction Problems,” J. Comput. Phys. 127, 27–51 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. K. W. Tam, “Problem 1-Aliasing,” in Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, 2004, NASA/CP-2004-2159.

  20. A. I. Tolstykh and M. V. Lipavskii, “On 10th-18th-Order Multioperators Scheme for Parallel Processing with Application to Jet’s Instability and Sound Radiation,” in Proc. of the 22nd Int. Conf. on Parallel Computing in Fluid Dynamics, Kaohsuing, Taiwan, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tolstykh.

Additional information

Dedicated to Academician A.A. Dorodnicyn on the Occasion of the Centenary of His Birth

Original Russian Text © A.I. Tolstykh, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 1, pp. 56–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolstykh, A.I. On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order. Comput. Math. and Math. Phys. 51, 51–67 (2011). https://doi.org/10.1134/S0965542511010131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511010131

Keywords

Navigation