Skip to main content
Log in

Thermodynamically compatible conservation laws in the model of heat conducting radiating gas

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Thermodynamic compatibility of the mass, momentum, and energy conservation laws that describe the motion of heat conducting gas in the presence of radiation heat exchange is considered. The study is based on the one-velocity two-component mathematical model of continuous compressible medium with the gas and radiation components. The work uses experimental data for radiation and other experimental data of modern physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Dorodnitsyn, Foundations of the Theory of Boundary Layer and Heat Conduction (Mosc. Fiz.-Tech. Inst., Moscow, 1968) [in Russian].

    Google Scholar 

  2. A. A. Dorodnitsyn, “On a Method for Numerical Solution of Certain Nonlinear Problems of Fluid Dynamics,” in Proc. of the Third All-Union Math. Congress (Akad. Nauk SSSR, Moscow, 1958), Vol. 3, pp. 447–453 [in Russian].

    Google Scholar 

  3. A. A. Dorodnitzin, “Method of Integral Relations for the Numerical Solution of Partial Differential Equations,” in Applications of Advanced Numerical Analysis and Digital Computing Problems (Ann Arbor Univ., Michigan, 1958), pp. 281–306.

    Google Scholar 

  4. O. M. Belotserkovskii, “Calculation of Flow around a Circular Cylinder,” in Computational Mathematics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1958), No. 3, pp. 149–185 [in Russian].

    Google Scholar 

  5. O. M. Belotserkovskii and P. I. Chushkin, “Numerical Method of Integral Relations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 731–759 (1962).

    Google Scholar 

  6. P. I. Chushkin, “Calculation of Certain Sonic Gas Flows,” Prikl. Mat. Mekh. 21(3), 353–360 (1957).

    Google Scholar 

  7. P. I. Chushkin, “The Method of Integral Relations for Supersonic Three-Dimensional Flows,” Zh. Vychisl. Mat. Mat. Fiz. 8, 853–864 (1968).

    Google Scholar 

  8. A. A. Dorodnitsyn, “Laminar Boundary Layer in Compressible Gas,” Dokl. Akad. Nauk SSSR 34(8), 234–242 (1942).

    Google Scholar 

  9. A. A. Dorodnitsyn, “Boundary Layer in Compressible Gas,” Prikl. Mat. Mekh. 6(6), 449–486 (1942).

    Google Scholar 

  10. I. N. Sokolova, “Temperature of a Plate in a Supersonic Flow with Account for Radiation,” in Theoretical Studies in Aerodynamics (Oborongiz, Moscow, 1957), pp. 206–221 [in Russian].

    Google Scholar 

  11. I. N. Sokolova, “Temperature of a Cone in a Supersonic Flow with Account for Radiation,” in Theoretical Studies in Aerodynamics (Oborongiz, Moscow, 1957), pp. 222–229 [in Russian].

    Google Scholar 

  12. S. K. Godunov, “Thermodynamics of Gases and Differential Equations,” Usp. Mat. Nauk 14(5(89)), 97–116 (1959).

    MATH  MathSciNet  Google Scholar 

  13. S. K. Godunov, “On the Concept of Generalized Solution,” Dokl. Akad. Nauk SSSR 134(6), 1279–1282 (1960) [Soviet Math. Dokl. 1 1194–1196 (1960)].

    MathSciNet  Google Scholar 

  14. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Fluid Dynamics Problems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. M. Ya. Ivanov, “Calculation of Flows of Gas in a Shock Tube of Variable Cross-Section,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 3, 162–166 (1970).

  16. S. K. Godunov and E. I. Romenskii, Elements of Mechanics of Continua and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  17. S. K. Godunov and V. M. Gordienko, “Simple Galilei Invariant and Thermodynamically Compatible Conservation Laws,” Prikl. Mat. Mat. Fiz. 43(1), 3–16 (2002).

    MathSciNet  Google Scholar 

  18. E. I. Romenskii, “Thermodynamically Compatible Conservation Laws in Models of Multiphase Continua,” in Mathematics in Applications (Novosibirsk, 2009), p. 221 [in Russian].

  19. M. Ya. Ivanov, “On the Conservation Laws and Thermodynamics of the Working Process in High-Temperature Turbine Engines,” in Mathematics in Applications (Novosibirsk, 2009), pp. 120–121 [in Russian].

  20. V. T. Zhukov, A. V. Zabrodin, and O. B. Feodoritova, “A Method for Solving Two-Dimensional Equations of Heat-Conducting Gas Dynamics in Domains of Complex Configurations,” Zh. Vychisl. Mat. Mat. Fiz. 33(8), 1240–1250 (1993) [Comput. Math. Math. Phys. (33) 1099–1109 (1993)].

    MATH  MathSciNet  Google Scholar 

  21. V. T. Zhukov and O. B. Feodoritova, “A Computer Program for the Solution of Nonstationary Three-Temperature Problem,” in Mathematics in Applications (Novosibirsk, 2009), pp. 116–117 [in Russian].

  22. Methodology for Numerical Simulation of Two-Dimensional Nonsteady Flows of Heat Conducting Gas in the Temperature Approximation in Complexly Shaped Domains with Moving Parts (Nonstationary Three-Temperature Problem) (Institut Prikladnoi Matematiki, Ross. Akad Nauk, Moscow, 2008) [in Russian].

  23. E. I. Romenskii, “Thermodynamically Compatible Conservation Laws Termodinamicheski in Models of Multiphase Continua,” in Mathematics in Applications (Novosibirsk, 2009), p. 221 [in Russian].

  24. B. Ya. Trubchikov, A Thermal Method for Measuring Turbulence in Wind Tunnels (Trudy TsAGI, Moscow, 1938), Issue 372 [in Russian].

    Google Scholar 

  25. Yu. A. Ivanov and S. Yu. Krasheninnikov, “On the Determination of Turbulence Characteristics Using Diffusion Measurements,” Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidkosti Gaza, No. 3, 89–96 (1970).

  26. S. V. Belov, M. Ya. Ivanov, I. V. Tsvetkov, et al., “Methodology of Determining the Heat Transfer Factor and Parameters of Thermal Trail behind Strongly Heated Bodies,” Tekhn. Otchet TsIAM, No. 300-5723, 195–208 (2009).

  27. M. Ya. Ivanov and R. Z. Nigmatullin, “Implicit Godunov Scheme of Improved Accuracy for the Numerical Integration of Euler Equations,” Zh. Vychisl. Mat. Mat. Fiz. 27, 1725–1735 (1987).

    MathSciNet  Google Scholar 

  28. M. Ya. Ivanov, V. G. Krupa, and R. Z. Nigmatullin, “Implicit Godunov Scheme of Improved Accuracy for Integrating of Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 29, 888–901 (1989).

    MathSciNet  Google Scholar 

  29. M. Ya. Ivanov and R. Z. Nigmatullin, “Simulation of Working Process in the Flow Passage of a Gas Turbine Engine,” in Andvances in Mechanics of Continua (Dal’nauka, Vladivostok, 2009), pp. 221–253 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Ivanov.

Additional information

Dedicated to Academician A.A. Dorodnicyn on the Occasion of the Centenary of His Birth

Original Russian Text © M.Ya. Ivanov, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 1, pp. 142–151.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.Y. Thermodynamically compatible conservation laws in the model of heat conducting radiating gas. Comput. Math. and Math. Phys. 51, 133–142 (2011). https://doi.org/10.1134/S096554251101009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251101009X

Keywords

Navigation