Skip to main content
Log in

Polyconvex potentials, invertible deformations, and thermodynamically consistent formulation of the nonlinear elasticity equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that the nonstationary finite-deformation thermoelasticity equations in Lagrangian and Eulerian coordinates can be written in a thermodynamically consistent Godunov canonical form satisfying the Friedrichs hyperbolicity conditions, provided that the elastic potential is a convex function of entropy and of the minors of the elastic deformation Jacobian matrix. In other words, the elastic potential is assumed to be polyconvex in the sense of Ball. It is well known that Ball’s approach to proving the existence and invertibility of stationary elastic deformations assumes that the elastic potential essentially depends on the second-order minors of the Jacobian matrix (i.e., on the cofactor matrix). However, elastic potentials constructed as approximations of rheological laws for actual materials generally do not satisfy this requirement. Instead, they may depend, for example, only on the first-order minors (i.e., the matrix elements) and on the Jacobian determinant. A method for constructing and regularizing polyconvex elastic potentials is proposed that does not require an explicit dependence on the cofactor matrix. It guarantees that the elastic deformations are quasiisometries and preserves the Lame constants of the elastic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ball, “Convexity Conditions and Existence Theorems in Nonlinear Elasticity,” Arch. Ration Mech. Anal. 63, 337–403 (1977).

    Article  MATH  Google Scholar 

  2. J. M. Ball, “Global Invertibility of Sobolev Functions and the Interpenetration of Matter,” Proc. R. Soc. Edinburgh A 88, 315–328 (1981).

    MATH  Google Scholar 

  3. S. K. Godunov and I. E. Romensky, “Thermodynamics, Conservation Laws and Symmetric Forms of Differential Equations in Mechanics of Continuous Media,” in Computational Fluid Dynamics Review (Wiley, New York, 1995), pp. 19–30.

    Google Scholar 

  4. T. Qin, “Symmetrizing Nonlinear Elastodynamic System,” J. Elasticity 50, 245–252 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. V. I. Kondaurov, “On Conservation Laws and Symmetrization of the Nonlinear Elasticity Equations,” Dokl. Akad. Nauk SSSR 256, 819–823 (1981).

    MathSciNet  Google Scholar 

  6. I. E. Romensky, “Conservation Laws and Symmetric Notation for the Elasticity Equations,” Tr. Semin. im. S.L. Soboleva 1, 132–143 (1984).

    Google Scholar 

  7. S. K. Godunov, “Interesting Class of Quasilinear Systems,” Dokl. Akad. Nauk SSSR 139, 520–523 (1961).

    MathSciNet  Google Scholar 

  8. S. K. Godunov and I. E. Romensky, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998) [in Russian].

    MATH  Google Scholar 

  9. S. Demoulini, D. M. A. Stuart, and A. E. Tzavaras, “A Variational Approximation Scheme for Three-Dimensional Elastodynamics with Polyconvex Energy,” Arch. Ration Mech. Anal. 157, 325–344 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Demoulini, D. M. A. Stuart, and A. E. Tzavaras, “Construction of Entropy Solutions for One-Dimensional Elastodynamics via Time Discretization,” Ann. Inst. H. Poincare Anal. Non Lineaire 17, 711–731 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. K. Godunov and I. M. Peshkov, “Symmetric Hyperbolic Equations in the Nonlinear Elasticity Theory,” Zh. Vychisl. Mat. Mat. Fiz. 48, 1034–1055 (2008) [Comput. Math. Math. Phys. 48, 975–995 (2008)].

    MATH  Google Scholar 

  12. J. C. Bellido and C. Mora-Corral, “Approximation of Hölder Continuous Homeomorphisms by Piecewise Affine Homeomorphisms,” Houston J. Math. (2009) [in press].

  13. A. D. Aleksandrov, “On Surfaces Representable by the Difference of Convex Functions,” Izv. Akad. Nauk Kaz. SSR, Ser. Mat. Mekh. 3, 3–20 (1949).

    Google Scholar 

  14. P. Hartman, “On Functions Representable as a Difference of Convex Functions,” Pacific J. Math. 9, 707–713 (1959).

    MATH  MathSciNet  Google Scholar 

  15. A. D. Aleksandrov, “Theory of Mixed Volumes of Convex Bodies: I. Extension of Some Concepts in the Theory of Convex Bodies,” Mat. Sb. 2(44), 947–972 (1937).

    Google Scholar 

  16. V. A. Garanzha, “Existence and Invertibility Theorems for the Problem of the Variational Construction of Quasi-Isometric Mappings with Free Boundaries,” Zh. Vychisl. Mat. Mat. Fiz. 45, 484–494 (2005) [Comput. Math. Math. Phys. 45, 465–475 (2005)].

    MATH  MathSciNet  Google Scholar 

  17. V. A. Garanzha, “Approximation of the Curvature of Alexandrov Surfaces Using Dual Polyhedral,” Russ. J. Numer. Anal. Model. 24, 409–432 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Lanczos, The Variational Principles of Mechanics (Mir, Moscow, 1965; Dover, New York, 1986).

    MATH  Google Scholar 

  19. W. Fenchel, “On Conjugate Convex Functions,” Can. J. Math. 1, 73–77 (1949).

    MATH  MathSciNet  Google Scholar 

  20. S. N. Kruzhkov, “First-Order Quasilinear Equations with Several Independent Variables,” Mat. Sb. 81, 228–255 (1970).

    MathSciNet  Google Scholar 

  21. K. O. Friedrichs and P. D. Lax, “Systems of Conservation Equations with Convex Extension,” Proc. Nat. Acad. Sci. USA 68, 1868–1688 (1971).

    Article  MathSciNet  Google Scholar 

  22. L. C. Evans, “A Survey of Entropy Methods for Partial Differential Equations,” Bull. Am. Math. Soc. 41, 409–438 (2004).

    Article  MATH  Google Scholar 

  23. K. O. Friedrichs, “Symmetric Hyperbolic Linear Differential Equations,” Commun. Pure Appl. Math. 7, 345–392 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. K. Godunov, “The Problem of Generalized Solution in the Theory of Quasilinear Equations and in Gas Dynamics,” Usp. Mat. Nauk 17(3), 147–158 (1962).

    MathSciNet  Google Scholar 

  25. P. G. Ciarlet, Mathematical Elasticity (Elsevier, New York, 1988; Mir, Moscow, 1992).

    MATH  Google Scholar 

  26. R. W. Ogden, Nonlinear Elastic Deformations (Dover, New York, 1997).

    Google Scholar 

  27. P. G. Ciarlet and G. Geymonat, “Sur les lois de comportement en elasticite non-lineaire compressible,” C.R. Acad. Sci. Paris, Ser. II 295, 423–426 (1982).

    MATH  MathSciNet  Google Scholar 

  28. R. W. Ogden, “Large Deformations Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubber-Like Solids,” Proc. R. Soc. London A 328, 567–583 (1972).

    Article  MATH  Google Scholar 

  29. A. I. Lur’e, Nonlinear Elasticity Theory (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  30. D. H. Wagner, “Symmetric Hyperbolic Equations of Motion for a Hyperelastic Material,” J. Hyperbolic Differ. Equations 3, 615–630 (2009).

    Article  Google Scholar 

  31. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  32. P. J. Blatz and W. L. Ko, “Application of Finite Elastic Theory to the Deformation of Rubbery Materials,” Trans. Soc. Rheology 6, 223–251 (1962).

    Article  Google Scholar 

  33. V. A. Pal’mov, Vibrations in Elastoplastic Materials (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  34. G. A. Holzapfel, “Biomechanics of Soft Tissue,” in Lemaitre Handbook of Materials Behavior Models (Academic, London, 2001), pp. 1057–1071.

    Chapter  Google Scholar 

  35. V. A. Garanzha, “Barrier Method for Quasi-Isometric Grid Generation,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1685–1705 (2000) [Comput. Math. Math. Phys. 40, 1617–1637 (2000)].

    MathSciNet  Google Scholar 

  36. S. S. Antman, Nonlinear Problems in Elasticity (Springer-Verlag, New York, 2004).

    Google Scholar 

  37. J. M. Ball, “Finite-Time Blow-Up in Nonlinear Problems,” in Nonlinear Evolution Equations (Academic, New York, 1978), pp. 189–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Garanzha.

Additional information

Original Russian Text © V.A. Garanzha, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 9, pp. 1640–1668.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garanzha, V.A. Polyconvex potentials, invertible deformations, and thermodynamically consistent formulation of the nonlinear elasticity equations. Comput. Math. and Math. Phys. 50, 1561–1587 (2010). https://doi.org/10.1134/S0965542510090095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510090095

Key words

Navigation