Skip to main content
Log in

Coherent structures in fluid dynamics and kinetic equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A possible approach to the simulation of turbulent flows is proposed that is based on statistics of vortices of various types in a plane. It is shown that coherent (large-scale) fluid structures can be identified with solutions of the Joyce-Montgomery equations, and the possibility that these solutions bifurcate is explored. The formalism of turbulent dynamics description is based on kinetic equations for point vortices with a nontrivial internal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Sedov, A Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1972), Vol. 2.

    Google Scholar 

  2. A. N. Kolmogorov, “Equations of Turbulent Motion of an Incompressible Fluid,” Izv. Akad. Nauk SSSR, Ser. Fiz. 6(1/2), 56–58 (1942).

    Google Scholar 

  3. W. D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1991).

    MATH  Google Scholar 

  4. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, (Nauka, Moscow, 1965/1967; MIT Press, Cambridge, Mass., 1971/1975), Vols. 1, 2.

    Google Scholar 

  5. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Gostekhteorizdat, Moscow, 1950; Pergamon, Oxford, 1972).

    Google Scholar 

  6. D. Chapman, “Ideal Vortex Motion in Two Dimensions: Symmetries and Conservation Laws,” J. Math. Phys. 19, 1988–1992 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  7. G. R. Kirchhoff, Vorlesungen Über Mathematische Physik I (Teubner, Leipzig, 1876).

    Google Scholar 

  8. P. H. Chavanis, Contribution á la mécanique statistique des tourbillons bidimensionnels. Analogie avec la relaxation violente des syste mes stellaires. Thése de doctorat. Ecole Normale Superieure de Lyon (France, Lyon, 1996).

  9. C. R. Willis and R. H. Picard, “Time-Dependent Projection-Operator Approach to Master Equations for Coupled Systems,” Phys. Rev. A 9, 1343–1358 (1974).

    Article  MathSciNet  Google Scholar 

  10. M. Sano, “Kinetic Theory of Point Vortex Systems from the Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy,” Phys. Rev. E 76, 046312–046319 (2007).

    Article  MathSciNet  Google Scholar 

  11. P. H. Chavanis, “Kinetic Theory of Two Dimensional Point Vortices from a BBGKY-Like Hierarchy,” Physica A (Amsterdam) 387, 1123–1154 (2008).

    Google Scholar 

  12. D. Dubin and T. M. O’Neil, “Two-Dimensional Guiding-Center Transport of a Pure Electron Plasma,” Phys. Rev. Lett. 60, 1286–1289 (1988).

    Article  Google Scholar 

  13. D. A. Schecter and D. H. Dubin, “Theory and Simulations of Two-Dimensional Vortex Motion Driven by a Background Vorticity Gradient,” Phys. Fluids 13, 1704–1723 (2001).

    Article  Google Scholar 

  14. R. Kawahara and H. Nakanishi, “Slow Relaxation in the Two Dimensional Electron Plasma under the Strong Magnetic,” J. Phys. Soc. Jpn. 76, 074001–074011 (2007).

    Article  Google Scholar 

  15. P. H. Chavanis, Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems, (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  16. G. Joyce and D. Montgomery, “Negative Temperature States for the Two-Dimensional Guiding Center Plasma,” J. Plasma Phys. 10(1), 107–121 (1973).

    Article  Google Scholar 

  17. A. Chorin, Vorticity and Turbulence (Springer-Verlag, New York, 1994).

    MATH  Google Scholar 

  18. P. H. Chavanis and M. Lemou, “Kinetic Theory of Point Vortices in Two Dimensions: Analytical Results and Numerical Simulations,” Eur. Phys. J. B 59(2), 217–247 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. E. Perry, T. T. Lim, M. S. Chong, and E. W. Tex, “The Fabric of Turbulence,” AIAA Paper, No. 80, 1358 (1980).

  20. O. M. Belotserkovskii, Turbulence and Instabilities (MZpress, Moscow, 2003).

    Google Scholar 

  21. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  22. H. Villat, Lecons sur la theorie des tourbillions (Gauthier Villars, Paris, 1930).

    Google Scholar 

  23. A. A. Vlasov, Nonlocal Statistical Mechanics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  24. M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations (Nauka, Moscow, 1969; Noordhoff, Leyden, 1974).

    MATH  Google Scholar 

  25. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, “Physical Processes Underlying the Development of Shear Turbulence,” Zh. Eksp. Teor. Fiz. 126, 577–584 (2004) [J. Exp. Theor. Phys. 99, 504–509 (2004)].

    Google Scholar 

  26. O. M. Belotserkovskii and Yu. I. Khlopkov, Monte Carlo Methods in Fluid Mechanics (Azbuka-2000, Moscow, 2008) [in Russian].

    Google Scholar 

  27. H. Villat, Lecons sur l’hydrodynamique (Gauthier Villars, Paris, 1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fimin.

Additional information

Original Russian Text © O.M. Belotserkovskii, N.N. Fimin, V.M. Chechetkin, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 9, pp. 1613–1623.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belotserkovskii, O.M., Fimin, N.N. & Chechetkin, V.M. Coherent structures in fluid dynamics and kinetic equations. Comput. Math. and Math. Phys. 50, 1536–1545 (2010). https://doi.org/10.1134/S096554251009006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251009006X

Key words

Navigation